Guided Literature Discussion of “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines”

Submitted by M. Watzky / University of Northern Colorado on Wed, 01/16/2019 - 19:11
Description

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125.

Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.

Descriptive Inorganic Chemistry

Submitted by RTMacaluso / University of Texas Arlington on Tue, 07/24/2018 - 14:26
Description

An overview of descriptive main group chemistry, solid state structures and the energetics of ionic, metallic, and covalent solids, acid-base chemistry and the coordination chemistry of the transition metals. The course is intended to explore and describe the role of inorganic chemistry in other natural sciences with an emphasis on the biological and geological sciences. Important compounds and reactions in industrial chemistry are also covered. Intended for both chemistry and non-chemistry majors.

Inorganic Chemistry Laboratory

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/17/2018 - 13:58
Description

Introduction to classical and modern techniques for
synthesizing inorganic compounds of representative and transition
metal elements and the extensive use of IR, NMR, mass, and UV-visible
spectroscopies and other physical measurements to characterize
products. Syntheses and characterization of inorganic and organic
materials/polymers are included. Attendance at departmental seminars
required. Lecture, laboratory, oral presentations.

What happened to my green solution?

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/10/2018 - 16:29
Description

Students in inorganic chemistry courses are often interested in the colors of transition metal complexes. This in-class activity serves an introduction to reactions of coordination complexes and pushes students to think about the relationship between the color of a complex cation and its structure. Students are provided with pictures of aqueous solutions of two chromium(III) salts [CrCl3*6 H2O and Cr(NO3)3*9 H2O] at two different times and are then asked to explain the changes observed in the solutions.

Inorganic Chemistry

Submitted by Lori Watson / Earlham College on Thu, 01/04/2018 - 11:27
Description

Inorganic chemists study the entire periodic table (even carbon—as long as it’s bound to a metal!) and are interested in the structure and reactivity of a wide variety of complexes.  We will spend the first third of the course learning some “tools” and then will apply them to a variety of current topics in inorganic chemistry (bioinorganic chemistry, solid state materials, catalysis, nuclear chemistry, and more!).

Inclusive Pedagogy: A Misidentified Molecule and Paper Retraction

Submitted by Sibrina Collins / Lawrence Technological University on Sun, 09/10/2017 - 19:20
Description

This learning object focuses on teaching students how to read and use Chemical and Engineering News for class discussions and critically evaluate the scientific literature. Recently, Chemical and Engineering News published an article about the retraction of a 15-year old paper, which had misidentified a multidentate ligand, which is central to the paper (Ritter, S.K. “Chemist Retract 15-year old paper and publish a revised version.” Chem. Eng. News, 2017, 95, (36), p6).

Chapter 21--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Mon, 08/14/2017 - 14:53
Description

Chapter 21 from George Stanley's organometallics course, Polymerization

 

this chapter covers the history of polymerization reactions.

Unlike the vast majority of the chapters in this series, there are no powerpoint slides for this chapter.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.