Advanced Inorganic Chemistry

Submitted by John Miecznikowski / Fairfield University on Sun, 06/02/2019 - 16:48

This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry.  After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced.   A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory.  The students will use symmetry and group theory approaches to understand central atom hybridization, ligand

Basics of Lanthanide-Based Photophysics

Submitted by Jacob Lutter / Wayne State University on Thu, 06/30/2016 - 14:27

This 5 slides about outlines the basics of lanthanide photophysics as a primer for those new to the topic.  These properties are very unique and actually very useful, which is a topic for another time.  The intricacies of what causes the Ln luminescence, its strengths and drawbacks are discussed along with how these drawbacks are addressed in molecular complexes.  Notes for the instructor are included that explain each slide.

Student Oral Presentations of a Communication from the Primary Literature

Submitted by Carmen Works / Sonoma State University on Mon, 06/27/2016 - 16:43

In the humanities it is common practice to read a piece of literature and discuss it.  This is also practiced in science and is the purpose of this exercise.  Each student is assigned a communication from the current  literature (inorganic, JACS, organometallics, J. Phys.

Isotopic labeling and reduced mass calculations for IR spectroscopy

Submitted by Adam Johnson / Harvey Mudd College on Sun, 03/27/2016 - 21:32

I used this as an in class activity but it may work better as a problem set for your class. I had the students read the pertinent chapters of the textbook which go through symmetry and molecular vibrations, including using both stretches and cartesian axes as bases. In class, I divided the students up into four groups. Each group did one of the problems for 30 minutes and during the last 20 minutes of class, they reported out their solution. The students had not seen the Hooke’s law in the textbook so I included it as part of the activity.

Peer Review - How does it work?: A literature discussion with a focus on scientific communication

Submitted by Mike Norris / University of Richmond on Thu, 07/02/2015 - 20:21

This learning object is based on discussion of the literature, but it follows a paper through the peer review process.  Students first read the original submitted draft of a paper to ChemComm that looks at photochemical reduction of methyl viologen using CdSe quantum dots.  There are several important themes relating to solar energy storage and the techniques discussed, UV/vis, SEM, TEM, electrochemistry, and catalysis, can be used for students in inorganic chemistry.

How to Determine the Irreducible Representation of a MO

Submitted by Richard Lord / Grand Valley State University on Wed, 07/01/2015 - 13:42

Five slides about how to systematically determine the irreducible representation if provided an unlabeled SALC. These slides focus on molecular orbitals, but this tool can be extended to any kind of SALC.

Advanced Inorganic Chemistry Course Videos

Submitted by Kathryn Haas / Saint Mary's College, Notre Dame, IN on Wed, 07/01/2015 - 12:02

At this website, you will find a link to the syllabus and all lecture videos for a "flipped" version of an Advanced Inorganic Chemistry Course taught at Saint Mary's College (Notre Dame, IN).  I used Shiver & Atkins for this course, and the format is based off of Dr. Franz's course at Duke.  If anyone is interested in the problem sets, I will be happy to share, although much of the material I used is from VIPEr.  

Tanabe Sugano Diagram JAVA Applets

Submitted by Amanda Reig / Ursinus College on Fri, 04/24/2015 - 13:53

A series of JAVA applets of Tanbe-Sugano diagrams were developed by Prof. Robert Lancashire at the University of the West Indies.  These diagrams allow students to determine deltao/B values based on ratios of peak energies without the pain of rulers and drawing lines.  There are also features that allow a person to input values and automatically calculate certain parameters.  You can also quickly find values of delta_o and B for certain complexes via a drop-down menu on some of the pages (e.g. Cr3+ complexes).    

Suite of LOs on Biomimetic Modeling

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 09:52

This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules.  The Parent LO:  Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.