VIPEr Fellows 2022 Workshop Favorites
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This is a computer-based activity intended for a bioinorganic chemistry course composed of upper-level undergraduate students. It is helpful for students to be familiar with concepts of electron transfer, including a surface-level introduction to Marcus theory and the inverted region, and photosynthetic charge separation before beginning this activity. However, this activity can easily be adapted to students with other levels of preparation in a bioinorganic course.
This LO is a literature discussion based on one figure in Chan et. al.
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Students are asked to provide correct, distinct, and relevant statements about a prompt which includes a coordination complex formula and a Tanabe Sugano diagram. If assigned as an in-class activity, 10 statements meeting the above criteria receive full credit.
A one-semester study of advanced topics in inorganic chemistry with emphasis on structure and bonding, transition metal chemistry, organometallic and solid-state chemistry.
Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory
The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements
Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods
Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This guide, available in print, online and in an app, allows users to look up appropriate catalysts and conditions to accomplish a wide variety of reactions.
This is a great new textbook by George Luther III from the University of Delaware. The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines. It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will need to explain inorganic processes in the environment.