Analyzing the Proposed Reaction Profile in “Changing the Charge: Electrostatic Effects in Pd-Catalyzed Cross-Coupling”
This LO is a literature discussion based on one figure in Chan et. al.
This LO is a literature discussion based on one figure in Chan et. al.
The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Students are asked to provide correct, distinct, and relevant statements about a prompt which includes a coordination complex formula and a Tanabe Sugano diagram. If assigned as an in-class activity, 10 statements meeting the above criteria receive full credit.
A one-semester study of advanced topics in inorganic chemistry with emphasis on structure and bonding, transition metal chemistry, organometallic and solid-state chemistry.
Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory
The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements
Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods
Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
This guide, available in print, online and in an app, allows users to look up appropriate catalysts and conditions to accomplish a wide variety of reactions.
This is a great new textbook by George Luther III from the University of Delaware. The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines. It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will need to explain inorganic processes in the environment.
This literature discussion is based on a paper by Bill Jones and Frank Feher (J. Am. Chem. Soc., 1986, 108, 4814-4819). In this paper, they study the activation of aromatic C-H bonds by a rhodium complex. Through careful experimental design, they were able to examine isotope effects on the selectivity of the reaction. Analysis of the rate data allowed them to prepare a reaction coordinate free energy diagram. This paper also introduces the effects of C-H bond breaking in early or late transition states on the vibrational energy spacing at both ground and excited states.