Chemical literature

26 Jul 2018

General Chemistry Collection for New Faculty

Submitted by Kari Stone, Benedictine University

VIPEr to the rescue!

The first year as a faculty member is extremely stressful and getting through each class day to day is a challenge. This collection was developed with new faculty teaching general chemistry in mind pulling together resources on the VIPEr site to refer back to as the semester drags along. There are some nice in-class activities, lab experiments, literature discussions, and problem sets for use in the general chemistry course. There are also some nice videos and graphics that could be used to spark interest in your students.

Subdiscipline: 
Prerequisites: 
Corequisites: 
Course Level: 
23 Jun 2018
Evaluation Methods: 

Students answer several questions prior to the in class discussion. These answers can be collected to assess their initial understanding of the paper prior to the class discussion. Assessment of the in class discussion could be based on students’ active participation and/or their written responses to the in class questions.

Evaluation Results: 

This Learning Object was developed as part of the 2018 VIPEr Summer Workshop and has not yet been used in any of our classes, but we will update this section after implementation.

Description: 

This is a literature discussion based on a 2018 Inorganic Chemistry paper from the Lehnert group titled “Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases“(DOI: 10.1021/acs.inorgchem.7b02333). The literature discussion points students to which sections of the paper to read, includes questions for students to complete before coming to class, and in class discussion questions. Several of the questions address content that would be appropriate to discuss in a bioinorganic course. Coordination chemistry and mechanism discussion questions are also included.

 

Corequisites: 
Prerequisites: 
Learning Goals: 

A successful student will be able to:

  • Evaluate structures of metal complexes to identify coordination number, geometry (reasonable suggestion), denticity of a coordinated ligand, and d-electrons in FeII/FeIII centers.

  • Describe the biological relevance of NO.

  • Identify the biological roles of flavodiiron nitric oxide reductases.

  • Identify the cofactors in flavodiiron nitric oxide reductase enzymes and describe their roles in converting NO to N2O.

  • Describe the importance of modeling the FNOR active site and investigating the mechanism of N2O formation through a computational investigation.

  • Explain the importance of studying model complexes in bioinorganic chemistry and analyze the similarities/differences between a model and active site.

  • Write a balanced half reaction for the conversion of NO to N2O and analyze a reaction in terms of bonds broken and bonds formed.

  • Interpret the reaction pathway for the formation of N2O by flavodiiron nitric oxide reductase and identify the reactants, intermediates, transition states, and products.

 

A successful advanced undergrad student will be able to:

  • Explain antiferromagnetic coupling.

  • Apply hard soft acid base theory to examine an intermediate state of the FNOR mechanism and apply the importance of the transition state to product formation of N2O.

  • Apply molecular orbitals of the NO species and determine donor/acceptor properties with the d-orbitals of the diiron center.

Implementation Notes: 

This paper is quite advanced and long, so faculty should direct students to which sections they should read prior to the class discussion. Information about which parts of the paper to read for the discussion are included on the handout. Questions #7 and #8 are more advanced, and may be included/excluded depending on the level of the course.

Time Required: 
In-Class Discussion 1-2 class periods depending on implementation.
23 Jun 2018
Evaluation Methods: 

 A key is provided for the discussion questions. The discussion questions can be collected and graded.

Description: 

The activity is designed to be a literature discussion based on Nicolai Lehnert's Inorganic Chemistry paper, Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.  The discussion questions are designed for an advanced level inorganic course. 

 

Corequisites: 
Course Level: 
Learning Goals: 

Upon completion of this activity, students will be able to:

  1. Identify the overall research goal(s) of the paper.

  2. Define and identify non-innocent ligands.

  3. Identify how electron density on the metal center can impact ligand coordination.

  4. Draw molecular orbital diagrams for coordination compounds.

  5. Identify covalency by interpreting molecular orbital diagrams and data.

  6. Define and interpret Enemark-Feltham notation.

  7. Recognize spin multiplicity of the metal and ligand fragments in a complex and how it corresponds to the overall spin multiplicity.

  8. Identify possible electronic structures of {FeNO} complexes.

  9. Describe various characteristics to be considered in the selection of a good reductant.

  10. Explain how occupying bonding versus antibonding orbitals changes the reactivity of a system.

Implementation Notes: 

This is a very involved article with lots of great concepts. It will take a lot of time to read. We suggest giving this as a student group assignment. Give the students a copy of the article and discussion questions. Give them 1-2 weeks to read through the article and complete the discussion questions. Spend one or two 50 min. class periods going over the discussion questions. 

Note: This was developed during the 2018 VIPEr Workshop and has not been implemented, yet. Above instructions are an initial guide, any feedback is welcome and appreciated!

Time Required: 
50-90 min.
23 Jun 2018

Interpreting Reaction Profile Energy Diagrams: Experiment vs. Computation

Submitted by Douglas A. Vander Griend, Calvin College
Evaluation Methods: 

Having not run this yet because it was collaboatively developed as part of a IONIC VIPEr workshop, we suggest grading questions 1-9 for correctness, either during or after class. Students should be tested later with additional questions based on reaction profiles. The final 3 questions should prepare students to constructively discuss the merits/limitations of computational methods. after discussion, students could be asked to submit a 1-minute paper on how well they can describe the benefits/limitations of compuational chemistry.

Evaluation Results: 

Once we use this, we will report back on the results.

Description: 

The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq. 8 from the paper) relating activation energy, temperature and rate, the student can make some initial judgements about how well DFT calculations model various aspects of a reaction mechanism such as the structure of intermediates and transition states, and free energy changes.

Learning Goals: 
Upon completing this activity, students will be able to:
  1. Interpret reaction profile energy diagrams.

  2. Use experimental and computational data to calculate half lives from activation energies and vice versa.

  3. Assess the value and limitations of DFT calculations.

Prerequisites: 
Course Level: 
Corequisites: 
Implementation Notes: 

Having not run this with a class, we can only suggest that this activity be run in a single class period.

We presume that students have been exposed to the basic idea of reaction profiles.

Teacher should hand out the paper ahead of time and reassure students that they are not going to be expected to understand many of the details of this dense computational research paper. Instead, students should read just the synopsis included on the handout.Teacher should then spend 5 - 10 minutes summarizing key aspects of paper: 1) it's about a nitric oxide reductase mimic that catalyzes the reaction 2NO → N2O + O; 2) NO is important signaling molecule; 3) DFT is a computational method to model almost any chemical molecule, including hypothetical intermediates and transition states.

Students should work through questions in groups of 2 - 4. The final question (12) is somewhat openended and the teacher should be prepared to lead a wrap up discussion on the benefits and limitations of computational chemistry.

Time Required: 
50 minutes
22 Jun 2018
Evaluation Methods: 

An answer key is included for faculty.

Evaluation Results: 

This LO was developed for the summer 2018 VIPEr workshop, and has not yet been implemented.  Results will be updated after implementation.

Description: 

This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases".  Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

Upon completion of this activity, students will be able to:

  1. Write a balanced half reaction for the conversion of NO to N2O and analyze a reaction in terms of bonds broken and bonds formed.

  2. Evaluate the structures of metal complexes to identify coordination number, geometry (reasonable suggestion), ligand denticity, and d-electron count in free FeII/FeIII centers.

  3. Recognize spin multiplicity of metal centers and ligand fragments in a complex.

  4. Interpret a reaction pathway and compare the energy requirements for each step in the reaction.

  5. Draw multiple possible Lewis Structures and use formal charges to determine the best structure.

  6. Draw molecular orbital diagrams for diatomic molecules.

  7. Identify the differences in bonding theories (Lewis vs MO), and be able to discuss the strengths and weaknesses of each.

  8. Interpret calculated MO images as σ or π bonds.

  9. Identify bond covalency by interpreting molecular orbital diagrams and data.

  10. Define key technical terms used in an article.

  11. Analyze the structure of a well written abstract.

  12. Identify the overall research goal(s) of the paper.

  13. Discuss the purposes of the different sections of a scientific paper.

Implementation Notes: 

The paper in which this discussion is centered around is very rich in concepts, and will take time for students to digest.  As the technical level is higher than most foundation level course, it is strongly recommended that students focus on the structure of the paper, and not the read the entire paper.  The discussion is modular with focuses on both MO theory drawn form the paper, as well as a general anatomy of how literature papers are organized and what constitutes a good abstract.  Either focus could take a single 50 minute lecture, with two being necessary to complete both aspects.  Instructors can choose either focus, or both depending on their course learning goals.

This was developed during the 2018 VIPEr workshop and has not yet been implemented.  The above instructions are a guide and any feedback is welcome and appreciated!

Time Required: 
One or two 50 minute lectures depending on instructor's desired focus
22 Jun 2018
Evaluation Methods: 

Discuss students responses with respect to the answer key.

Evaluation Results: 

This activty was developed for the IONiC VIPEr summer 2018 workshop, and has not yet been implemented.

Description: 

Inorganic chemists often use IR spectroscopy to evaluate bond order of ligands, and as a means of determining the electronic properties of metal fragments.  Students can often be confused over what shifts in IR frequencies imply, and how to properly evaluate the information that IR spectroscopy provides in compound characterization.  In this class activity, students are initially introduced to IR stretches using simple spring-mass systems. They are then asked to translate these visible models to molecular systems (NO in particular), and predict and calculate how these stretches change with mass (isotope effects, 14N vs 15N).  Students are then asked to identify the IR stretch of a related molecule, N2O, and predict whether the stretch provided is the new N≡N triple bond or a highly shifted N-O single bond stretch.  Students are lastly asked to generalize how stretching frequencies and bond orders are related based on their results.

 
Learning Goals: 
  1. Evaluate the effect of changes in mass on a harmonic oscillator by assembling and observing a simple spring-mass system (Q1 and 2)

  2. Apply these mass-frequency observations to NO and predict IR isotopic shift (14N vs. 15N) (Q3 and 4)

  3. Predict the identity of the diagnostic IR stretches in small inorganic molecules. (Q5, 6, and 7)

Equipment needs: 

Springs, rings, stands, and masses (100 and 200 gram weights for example).

 

Corequisites: 
Implementation Notes: 

Assemble students into small groups discussions to answer the questions to the activity and collaborate.

 

 

Time Required: 
Approximately 50 minutes
13 Jun 2018

The Preparation and Characterization of Nanoparticles

Submitted by Kyle Grice, DePaul University
Evaluation Methods: 

Students are evaluated on their participation in lab, lab safety, lab notebook pages, and a lab report turned in a week after the last day of the experiment. 

Evaluation Results: 

This lab was first run in spring of 2016, and again in spring of 2017 and 2018 (a different instructor carried out the lab in 2018). 

In general, students do well on the lab report and seem to enjoy the experiment.They often need guidance when interpreting the Analytical Chemistry article and selecting the correct equations. Discussing their values with them in office hours ("does that make sense?") helps them understand their calculations. 

A sample lab report that scored above 90% is included in the faculty-only files. 

Description: 

This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever! 

We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab. 

While it was made for an upper-division course, I think It could be adapted and implemented at many levels, including gen chem. I do not spend much time on nano in the lecture (none in fact), so this lab was made to have students learn a bit about nanochemistry somewhere in inorganic chemistry. We have one 10-week quarter of inorganic lecture and lab, offered every spring quarter.

This lab takes approximately 2-3 hours if students are well prepared and using their time well, but is usually spread over 2 days. Students are concurrently doing experiments for another lab or two because we have a lab schedule that overlaps multiple labs, and can do these during one day or across two days. The lab space is an organic chemistry laboratory, so we have access to the usual lab synthetic equipment

Students in thelaboratory write lab reports,which are the due the week after the last day of the lab experiment. In the lab report they use their UV-Vis data to calculate information about the AuNP. 

The lab has been posted, as well two photos from students' ferrofluids (these were posted with permission on our departmental blog). A rubric has been posted as a faculty-only file. I have also included a student submission that received over 90% on the lab with their identifying information removed. Students write and introduction and need to cite journal articles in their report, so they are expected to do reading on nanochemistry topics outside of the lab period as they write their reports. 

I am sure the lab can be improved, this was what i came up with the materials and time I had. I plan on continuing to revise and edit it as time goes on. Any suggestions are very welcome! 

Prerequisites: 
Corequisites: 
Learning Goals: 

A student should be able to perform a chemical laboratory experiment safely and follow proper lab notebook protocol.

A student should be able to determine the average size of AuNPs from spectroscopic data and primary literature.

A student should determine atomic and nano-scale information from physical properties.

A student should be able to construct a lab report in the style of an ACS article (Students in my lab wrote lab reports for each experiment). 

Equipment needs: 

For this experiment, you  need

The chemical materials - HAuCl4, trisodium citrate, 

Heating/stirring plates

Glassware

UV-Vis spectrometer (mainly Vis)

A laser pointer

Strong magnets (the stronger and larger the better)

Implementation Notes: 

The syntheses are relatively straightforward, although we've had some problems getting "spikes" for the ferrofluid. Anecdotally, adding the reagents and doing the steps faster tends to give better "spiking". Some students just see a blob moving around in response to the magnet, which was fine in terms of their report. 

The AuNP synthesis can also be done with an ultrasonicator or by addition of sodium borohydride, among other methods. We don't have them make a calibration curve of chloride addition, but that could be a possibility.  

I like having a pre-made solution of a red oroganic dye to shine the laser pointer through to compare versus the laser shining through the AuNP solution. 

One year, the AuNP synthesis was going very slow. We realized it was because the Au(III) was diluted in acid, so it was protonating the citrate. Boiling for a while before adding the citrate solution helped fix this problem.

KAuCl3 is also a good source of Au(III) for this lab. 

Time Required: 
2 hours
1 Jun 2018
Evaluation Methods: 

This LO has not been implemented; however, we recommend a few options for evaluating student learning:

  • implement as in-class group work, collect and grade all questions

  • have students complete the literature discussion questions before lecture, then ask them to modify their answers in another pen color as the in-class discussion goes through each questions

  • hold a discussion lecture for the literature questions; then for the following lecture period begin class with a quiz that uses a slightly modified problem.

Evaluation Results: 

This LO has not been implemented yet.

Description: 

In honor of Professor Richard Andersen’s 75th birthday, a small group of IONiC leaders submitted a paper to a special issue of Dalton Transactions about Andersen’s love of teaching with the chemical literature. To accompany the paper, this literature discussion learning object, based on one of Andersen’s recent publications in Dalton, was created. The paper examines an ytterbium-catalyzed isomerization reaction. It uses experimental and computational evidence to support a proton-transfer to a cyclopentadienyl ring mechanism versus an electron-transfer mechanism, which might have seemed more likely.

 

The paper is quite complex, but this learning object focuses on simpler ideas like electron counting and reaction coordinate diagrams. To aid beginning students, we have found it helpful to highlight the parts of the paper that relate to the reading questions. For copyright reasons, we cannot provide the highlighted paper here, but we have included instructions on which sections to highlight if you wish to do that.

 

Corequisites: 
Course Level: 
Learning Goals: 

After completing this literature discussion, students should be able to

  • Count the valence electrons in a lanthanide complex

  • Explain the difference between a stoichiometric and catalytic reaction

  • Predict common alkaline earth and lanthanide oxidation states based on ground state electron configurations  

  • Describe how negative evidence can be used to support or contradict a hypothesis   

  • Describe the energy changes involved in making and breaking bonds

  • On a reaction coordinate diagram, explain the difference between an intermediate and a transition state

  • Explain how calculated reaction coordinate energy diagrams can be used to make mechanistic arguments

Implementation Notes: 

This is a paper that is rich in detail and material. As such, an undergraduate might find it intimidating to pick up and read. We have provided a suggested reading guide that presents certain sections of the paper for the students to read. We suggest the instructor highlight the following sections before providing the paper to the students. While students are certainly encouraged to read the entire paper, this LO will focus on the highlighted sections.  

 

Introduction

            Paragraph 1

            Paragraph 2

            Paragraph 3

            Paragraph 4

First 5 lines ending at the word high (you may encourage students to look up exergonic if that is not a term commonly used in your department)

Line 14 starting with “In that sense,” through the end of the paragraph

            Paragraph 6

From the start through the word “endoergic” in line 22

Line 31 from “oxidation of” to the word “described” in line 33

Line 40 from “These” to the word “dimethylacetylene” in line 45

Paragraph 7

            From the start to the word “appears” in line 4

            The words “to involve” in line 4

            Starting in line 4 with “a Cp*” to “transfer” in line 5

Results and Discussion

            Paragraph 1

            Paragraph 2

            Paragraph 3 from the start through “six hours” in line 10

            Paragraph 4

            Paragraph 5

                        From the start to “solution” in line 3

                        From “This exchange” in line 10 to “allene” in line 11

                        From “Hence” in line 19 through the end of the paragraph

            Paragraph 6 from the start through “infrared spectra” in line 19

            Paragraph 7 from “Hence” in line 4 through the end of the paragraph

Mechanistic aspects for the catalytic isomerisation reaction of buta-1,2-diene to but-2-yne using (Me5C5)2Yb p 2579.

            Paragraph 1

            Paragraph 2

            Paragraph 3

            Paragraph 4

Experimental Section

            Synthesis of (Me5C5)2Yb(η2-MeC≡CMe).

            Synthesis of (Me5C5)2Ca(η2-MeC≡CMe).

Reaction of (Me5C5)2Yb with buta-1,2-diene

 

 

 

Time Required: 
One class period.
8 May 2018

Developing Effective Lab Report Abstracts based on Literature Examples

Submitted by Katherine Nicole Crowder, University of Mary Washington
Evaluation Methods: 

I use a rubric that I have developed (see attached).

They are graded out of 50 points: 5 points per category on the rubric.

Evaluation Results: 

Most students score between 40-49 on this assignment. They mostly lose points for grammar, including things that they shouldn't (which hits them in two categories - conciseness and only relevant information included), and forgetting to write a title.

Description: 

For inorganic lab, I have my students write their lab reports in the style of the journal Inorganic Chemistry. The first week of lab, we spend time in small groups looking at several examples of recent articles from Inorganic Chemistry, focusing mainly on the experimental section and the abstract (as these are included in every lab report). We then come back together as a class to have a discussion of each of the sections in the articles. We discuss what was included in each section, what wasn’t included, and the style, tone, tense, and voice of each section. I keep a running list of what we discuss to post on our CMS. It is a great opportunity to discuss the expectations for lab reports for this course (and they feel like they have a say in what they will be expected to include), and it is also a time to highlight what may be done slightly differently in inorganic versus some of the other sub-disciplines.

Following this discussion, I provide them with another current article from Inorganic Chemistry, except this time I have removed the abstract and all identifying information (authors, title, volume, page numbers, etc.) using editing (white boxes over the information) in pdf. Their assignment is to read through the article and then write their own title and abstract, keeping in mind the elements of our discussion as they write.

Since this is very early in the semester, I try to choose an interesting article that won’t be completely over their head. I also stress that they don’t have to completely understand the results to write about them, as they are usually summarized nicely in the conclusions section. Since I expect them to focus mainly on their results in their lab report abstracts, I try to choose articles that have a lot of numerical and spectral data to incorporate.

This year I chose

Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis

Ian G. McKendry, Akila C. Thenuwara, Samantha L. Shumlas, Haowei Peng, Yaroslav V. Aulin, Parameswara Rao Chinnam, Eric Borguet, Daniel R. Strongin, and Michael J. Zdilla

Inorganic Chemistry 2018 57 (2), 557-564

DOI: 10.1021/acs.inorgchem.7b01592

The students are evaluated based on their inclusion of the aspects of abstracts that we discussed, their summarization of the main findings of the article, and their grammar.

Corequisites: 
Prerequisites: 
Learning Goals: 

A student should be able to:

  • Identify common aspects of sections of literature article examples, namely the abstract and experimental section
  • Read a current literature article from Inorganic Chemistry and identify the main findings in order to write their own abstract for the article
  • Use these experiences to guide their writing for lab reports for the inorganic lab course
Equipment needs: 

None.

Implementation Notes: 

I bring 3-4 examples of articles that have abstracts that incorporate elements that I want them to include in their lab report abstracts. I bring 3-4 examples of articles that are mainly synthetic for their experimental sections, as that is what their labs will be mostly. I post these examples to our CMS after lab.

I split students into groups of 3-4 to look over the articles, then we come back together as whole class for the discussion. It is interesting to see what the different groups pick up on.

I bring my tablet to take notes on during the discussion, then post that on the CMS as well.

I have posted the discussion summary from this spring.

Links to the article I used for the abstract writing assignment and the articles I used for the in-class discussion are below.

Time Required: 
30-45 minutes

Pages

Subscribe to RSS - Chemical literature