Professional skills development

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

9 Jun 2019

An improved method for drawing the bonding MO for dihydrogen

Submitted by Adam R. Johnson, Harvey Mudd College
Evaluation Methods: 

When I do this correctly, the students don't accidentally see something which may make immature students giggle.

Evaluation Results: 

I have had multiple colleagues tell me that this technique worked for them and saved them from repeating an embarassing classroom event.

Description: 
Most of us have probably been there. Discussing homonuclear diatomic MO diagrams and on the first day you want to put up the sigma bonding molecular orbital for H2. If you teach it like me, you emphasize the LCAO-MO approach, so you draw a hydrogen atom with its 1s orbital interacting with a hydrogen atom with its 1s orbital...and then you notice giggling from the less mature audience members. My technique will help to prevent this from happening. The technique is in the "faculty only" files section.
Learning Goals: 

The instructor will draw the bonding MO of dihydrogen without accidentally causing laughter in the class or self embarassment.

Corequisites: 
Equipment needs: 

chalkboard or whiteboard

ability to adjust quickly just in case

Prerequisites: 
Implementation Notes: 

I have come close to accidentally drawing the incorrect version of this diagram and I am able to stop myself quickly as illustrated in the instructions. 

Time Required: 
a minute to learn, a lifetime to master.
9 Jun 2019

Chem 165 2018

Submitted by Adam R. Johnson, Harvey Mudd College

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).

Subdiscipline: 
Corequisites: 
Course Level: 
8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

7 Jun 2019

Guideline for drawing chemical structures

Submitted by Bradley Wile, Ohio Northern University
Description: 

This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I give this to all of my research students as part of the welcome to the group package.

2 Jun 2019

Maths for Chemists

Submitted by David Harding, Walailak University
Description: 

Chemistry requires mathematics in almost all areas but it is a subject many students struggle with. This short booklet introduces mathematics from basic concepts to more advanced topics. A particularly nice feature is that examples of chemistry calculations are included so that students can understand why they have learn mathematics at all. This resource comes from the Royal Society of Chemistry's Learn Chemistry website.

Prerequisites: 
Corequisites: 
Course Level: 
22 May 2019

Digital Lab Techniques Manual

Submitted by Catherine McCusker, East Tennessee State University
Description: 

MIT OpenCourseWare has a great series of videos explaining (synthetic) lab techniques 

Course Level: 
Prerequisites: 
Corequisites: 
Implementation Notes: 

I have my research students watch these videos before starting to work in the lab.  Many of them have (or remember) very little hands-on lab experience before they start.

Time Required: 
Each video is around 10-15 minutes long
6 May 2019
Evaluation Methods: 
  • The instuctor walked around the classroom to help students individually as needed for immediate assessment.
  • At the end of the class period, students submitted their work to Blackboard for grading.
  • Assignments were graded based on accuracy and quality of the drawings.
Evaluation Results: 

Students generally were able to determine the molecular formula and generate connectivity drawings of the displayed 3-D structures, but really struggled with 3-D drawing. Although this was developed for a course with second year students who had completed general chemistry, even older students in the course struggled with this component. However, by the end of class, all students greatly improved in their ability to understand, interpret, and convey 3-D structure. 

Many students were surprised and many jokes were made about this being a chemistry art class. Although some students didn't particularly enjoy drawing, all understood the value and felt like they had learned something useful. At the end of the semester, many students remarked that the chemical drawing section was the most useful or interesting. 

Description: 

This in-class activity was designed for a Chemical Communications course with second-year students. It is the first part of a two-week segment in which students learn how to use Chemdraw (or similar drawing software) to create digital drawings of molecules.

In this activity, students are given a blank worksheet and 5 models of molecules were placed around the classroom. Students interpreted the 3-D models to determine molecular formulas, connectivity, and generate drawings that convey the 3-D elements. Once students completed the worksheet by hand, they generated the whole worksheet using Chemdraw.

Learning Goals: 

Students will be able to:

1.    Write the formula for a molecule based on a 3-D structure.

2.    Draw a molecule based on a 3-D structure.

3.    Convey 3-D structure of a molecule in a drawing.

4.    Translate molecular connectivity to a drawing that conveys 3 dimensions.

5.    Create digital drawings of molecules using Chemdraw or similar chemical drawing software.

Equipment needs: 
  • Molecular model set for the instructor to prepare structures before class.
  • One computer per student with chemical drawing software such as Chemdraw.
Course Level: 
Implementation Notes: 

Prior to the activity, students were given a brief presentation with an introduction to basic Chemdraw elements using the Chemdraw manual and existing tutorials (see links provided). VSEPR was also reviewed.

For the activity, students were given 3-D models of molecules, and the color key for atom identity was written on the board (eg. blue = oxygen, black = carbon...). The activity was conducted in a class of 24 students, in which each student had access to a computer. The entire class period was 1 hour 50 min, but the activity could be shortened if fewer molecules are included.

Before class, the instructor built models of molecules using a molecular model kit. It is helpful to have multiple copies of each molecule, especially for a larger class, but not critical. The molecules used for the acitvity can be seen in the faculty-only key, and were chosen to have a range of 3-D structures, but other molecules could be chosen. For example, a coordination chemistry or upper division course could have 3-D printed models of crystal structures used as the starting point. 

Time Required: 
60 min

Pages

Subscribe to RSS - Professional skills development