Catalysis

25 Jul 2019

1FLO: One Figure Learning Objects

Submitted by Chip Nataro, Lafayette College
Corequisites: 
9 Jun 2019

Chem 165 2018

Submitted by Adam R. Johnson, Harvey Mudd College

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).

Subdiscipline: 
Corequisites: 
Course Level: 
9 Jun 2019

1FLO: PCET and Pourbaix

Submitted by Anne Bentley, Lewis & Clark College
Evaluation Methods: 

I graded each student’s problems as I would any other homework assignment, and they averaged about 80% on that part of the assignment. The other half of the total points for the assignment came from in-class participation.

Evaluation Results: 

We had a rich conversation about this article in class; it was probably one of the most interesting literature discussion conversations I’ve had. Although this was the only introduction to Pourbaix diagrams in the course, 12 of 15 students correctly interpreted a “standard” Pourbaix diagram on a course assessment.

 

Description: 

This set of questions is based on a single figure from Rountree et al. Inorg. Chem. 2019, 58, 6647. In this article (“Decoding Proton-Coupled Electron Transfer with Potential-pKa Diagrams”), Jillian Dempsey’s group from the University of North Carolina examined the mechanism by which a nickel-containing catalyst brings about the reduction of H+ to form H2 in non-aqueous solvent. Figure 3 in the article presents an excellent introduction to the use of Pourbaix diagrams and cyclic voltammetry to determine the mechanism of a proton-coupled electron transfer reaction central to the production of hydrogen by a nickel-containing catalyst.

Corequisites: 
Course Level: 
Learning Goals: 

Students should be able to:

-  identify atoms in a multidentate ligand that can coordinate to a metal as a Lewis base

-  outline the difference between hydride addition to a metal and protonation of a ligand in terms of changes to the overall charge of the complex

-  analyze a Pourbaix diagram to predict the redox potential and pKa of a species

Subdiscipline: 
Implementation Notes: 

I have discussed the challenge of integrating literature discussions into my inorganic course in a BITeS post and the VIPEr forums. Each spring I try something a little different. This year I used three articles from the literature to frame our review of course material at the end of the semester, with each literature discussion occupying a one-hour class meeting.

In each case, the students completed problems before coming to class. While these problems were based on the journal articles, they did not require the students to read / consult the journal articles in order to complete the assignment. The students brought an electronic or paper copy of the article to class. I usually put students in groups (approximately 3 per group) and gave each group new questions to work on, which did draw from the article. After some time working in groups, each group presented their material to the rest of the class.

In implementing this particular literature discussion, I didn’t have any further questions for them.  I walked through some of the other figures from the article (especially Figure 1).  We discussed the authors’ use of color in creating Figure 3. We also reviewed the significance of horizontal vs vertical vs diagonal lines. Because I had not covered Pourbaix diagrams in the course, the activity was a good introduction to the concept.

Because these problems don’t require consultation with the article, they are suitable to use on an exam.

Time Required: 
varies
8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Pages

Subscribe to RSS - Catalysis