National ACS Award Winners 2022 LO Collection
This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.
This Literature Discussion LO was created for the 2023 ACS Inorganic Chemistry Award Winners collection. Professor Shannon Stahl was the recipient of the 2023 Organometallic Chemistry Award. This LO is based on a recent paper from the Stahl group entitled "Can Donor Ligands Make Pd(OAc)2 a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Reox Equilibria" published in J. Am. Chem. Soc. 2020, 142, 19678-19688.
This collection of learning objects was created to celebrate the National ACS Award Winners 2023 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
In SLiThEr #39 Chip Nataro (Lafayette University) introduces us to the discussion LOs he uses in his senior-level inorganic course and the topics covered.
This paper describes the use of a catalytic nickel system for the hydrodefluorination of aryl amides. While organofluorine compounds are extremely useful because of their unique properties, there are growing concerns about the impact of these compounds on the environment. Carbon-fluorine bonds are extremely strong, and so getting them to react is a significant challenge for chemists.
This paper describes work from the Milstein group in which ruthenium catalysts with pincer ligands are used to depolymerize nylons by breaking the C-N bond and hydrogenating the resulting products to amines and alcohols. Waste plastic is a serious environmental concern that needs a solution. Organometallic chemists put significant effort into finding ways to convert monomers into polymers, and now we must figure out ways to do the reverse.
Descriptive chemistry of the main group elements with some emphasis on the non-metals. Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques.
From the course catalog: The chemistry of the Main Group elements and the transition metals are studied with emphasis on the properties, structures, and reactivities of these elements and their compounds.
RSC has a series of chemistry games that can be downloaded from their website. The link here is specifically for games related to transition metals. There are three games (a Jeopardy! style game, a Password-style game and a Taboo-style game). The game formats could easily be adapted to other content. You may need to sign up for a free instructor account to access the resources.