Pyridylamido Hafnium and Zirconium Complexes: Synthesis, Dynamic Behavior, and Ethylene/1-octene and Propylene Polymerization Reactions (Klosin)

Submitted by Shirley Lin / United States Naval Academy on Tue, 03/08/2022 - 06:31
Description

This literature discussion focuses on the synthesis, characterization, and polymerization behavior of non-cyclopentadienyl-based Group 4 catalysts for the polymerization of ethylene/1-octene and propylene.

This LO is part of a special VIPEr collection honoring the 2022 ACS National Award recipients in the field of inorganic chemistry. Jerzy Klosin was the recipient of the ACS Award in Industrial Chemistry for the development of versatile homogeneous catalysts for the production of a wide range of polymer-based materials on a large industrial scale.

Evidence of a homogeneous trinuclear Rh(I)-Cu(II)-Rh(I) catalyst for benzene C-H oxidative addition and styrene production (Gunnoe)

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 03/02/2022 - 10:26
Description

The literature discussion is based on a manuscript by Gunnoe and coworkers (ACS Catal. 2021, 11, 5688-5702. DOI: 10.1021/acscatal.1c01203). The paper presents mechanistic studies of catalytic oxidative conversion of arenes and olefins to alkenyl arenes with a focus on styrene production.

Free Energy of Activation & Reaction Completion Times

Submitted by Joanna Webb / West Virginia Wesleyan College on Thu, 02/17/2022 - 13:39
Description

This spreadsheet uses the Eyring equation to draw a connection between activation barriers and the timescale of a reaction. Students input a free energy of activation and can quickly see how long a reaction will take at varying temperatures. This has been particularly useful in computational sections of literature articles that investigate possible mechanistic pathways.

VIPEr nanoCHAt : NeWBiEs Spring 2022 Learning Objects

This collection accompanies the IONiC VIPEr nanoCHAt video series NeWBiEs, recorded in Spring 2022. This series is comprised of weekly conversations with two IONiC members, Wes Farrell and Shirley Lin from the US Naval Academy, as they taught a foundation-level inorganic chemistry course for the first time. The LOs discussed in the videos are included in this collection.

Shirley Lin / United States Naval Academy Wed, 02/02/2022 - 18:07

Essential Inorganic Chemistry

Submitted by David Benson / Calvin University on Tue, 01/18/2022 - 19:10
Description

Course Description: This foundational course for 2nd-year students covers the properties and trends of molecules derived from across the periodic table. In addition to main-group elements, a deeper understanding of transition metal ions will be developed. Topics covered include periodicity, bonding, symmetry, and reactivity.

Inorganic Chemistry

Submitted by Laurel Goj Habgood / Rollins College on Mon, 01/10/2022 - 16:45
Description

The course is currently designed for a student population impacted by COVID and College policies that the department offer this course every third semester. This semester I have a diverse student population in terms of developmental levels including cohort year (freshman, junior, senior), prior foundational course work (biochemistry, analytical, physical), and research experience. I have altered the assessment part of the course substantively from prior iterations and reduced topic coverage to provide flexibility.

Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex

Submitted by Todsapon T. / University of Evansville on Tue, 11/23/2021 - 11:40
Description

This literature discussion involves various aspect of organometallic chemistry ranging from synthesis, reactions, symmetry, NMR and IR spectroscopy of organometallic compounds as well as catalysis.

Students are asked to read the article published in Angewandte Chime, and answer the questions from the worksheet. Students later discuss their answers with the entire class.

Inorganic Chemistry I

Submitted by Rudy Luck / Michigan Technological University on Thu, 08/26/2021 - 12:41
Description

Descriptive chemistry of the main group elements with some emphasis on the non-metals.  Transition metal compounds: aspects of bonding, spectra, and reactivity; complexes of n-acceptor ligands; organometallic compounds and their role in catalysis; metals in biological systems; preparative, analytical, and instrumental techniques.