Organometallic chemistry

9 Jun 2019

Chem 165 2018

Submitted by Adam R. Johnson, Harvey Mudd College

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).

Course Level: 
8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

6 Jun 2019

This Literature Discussion is based on the article “Square-planar Co(III) {O4} coordination: large ZFS and reactivity with ROS” by Linda Doerrer et. al.   It includes a reading guide that will direct students to specific sections of the paper that highlight some of the key results and analytical techniques that lead to them.

Course Level: 
Learning Goals: 
  1. Interpret results in high-level scientific papers, which will help them gain confidence in their abilities to read papers.

  2. Identify conclusions from the text of a paper, given an indicated scheme and data set.

  3. Synthesize multiple conclusions from different sections of a paper into an overall understanding of the conclusions of a paper

  4. Relate oxidation state to bond lengths in real examples

  5. Compare low- and high-spin d-orbital splitting diagrams.

  6. Identify unpaired electrons in a splitting diagram.

  7. Relate electron-density to acidity and ligand field strength.

  8. Recognize that science is collaborative and involves experts in many fields.

Implementation Notes: 

These questions are drawn from key conclusions in the text of the paper. It could be useful to highlight the specific areas of the text, or to include a statement like the following:


"For the following questions, specific figures and acronyms are mentioned. Often, authors will include a reference to a specific figure in the text when they are drawing conclusions from the data, and so it can be useful to find those specific sentences in the text of the paper when you are analyzing their data and conclusions."

5 Jun 2019

Zinc-Zinc Bonds (Expanded and Updated)

Submitted by Wesley S. Farrell, United States Naval Academy
Evaluation Methods: 

Performance and participation in the discussion will be assessed 

Evaluation Results: 

None collected yet. Evaluation data will be added in the future.


This paper in Science reports the synthesis of decamethyldizincocene, a stable compound of Zn(I) with a zinc-zinc bond. In the original LO, the title compound and the starting material, bis(pentamethylcyclopentadienyl)zinc, offer a nice link to metallocene chemistry, electron counting, and different modes of binding of cyclopentadienyl rings as well as more advanced discussions of MO diagrams. More fundamental discussion could focus on the question of what constitutes the evidence for a chemical bond, in this case, the existence of a zinc-zinc bond. In this updated LO, these topics are still covered, however additional topics, such as point group idenitifaction, details regarding the reaction mechanism, electronic structure, and  searching the literature using SciFinder are covered.  Additionally, electron counting is divided into both the covalent and ionic models.

Course Level: 
Learning Goals: 
  1. Students should become more confident reading the primary literature

  2. Students should be able to apply existing knowledge to interpret research results.

  3. Students should be able to apply electron counting formalisms to organometallic compounds.

  4. Students should be able to use 1H NMR spectroscopy data to rationalize structure.

  5. Students can rationalize bond distances based on periodic trends in atomic radii

  6. Students use SciFinder to put this work into a larger context.

  7. Students identify redox reactions based on oxidation changes.

  8. Students identify molecular point groups based upon structures.

  9. Students should be able to connect d electron count to observed colors of compounds. 

Related activities: 
Implementation Notes: 

Students are asked to read the paper and the accompanying Perspectives article before class as well as answer the discussion questions. The questions serve as a useful starting point for class discussion. 

Time Required: 
50 minutes


Subscribe to RSS - Organometallic chemistry