No Corequisites

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

9 Jun 2019

An improved method for drawing the bonding MO for dihydrogen

Submitted by Adam R. Johnson, Harvey Mudd College
Evaluation Methods: 

When I do this correctly, the students don't accidentally see something which may make immature students giggle.

Evaluation Results: 

I have had multiple colleagues tell me that this technique worked for them and saved them from repeating an embarassing classroom event.

Description: 
Most of us have probably been there. Discussing homonuclear diatomic MO diagrams and on the first day you want to put up the sigma bonding molecular orbital for H2. If you teach it like me, you emphasize the LCAO-MO approach, so you draw a hydrogen atom with its 1s orbital interacting with a hydrogen atom with its 1s orbital...and then you notice giggling from the less mature audience members. My technique will help to prevent this from happening. The technique is in the "faculty only" files section.
Learning Goals: 

The instructor will draw the bonding MO of dihydrogen without accidentally causing laughter in the class or self embarassment.

Corequisites: 
Equipment needs: 

chalkboard or whiteboard

ability to adjust quickly just in case

Prerequisites: 
Implementation Notes: 

I have come close to accidentally drawing the incorrect version of this diagram and I am able to stop myself quickly as illustrated in the instructions. 

Time Required: 
a minute to learn, a lifetime to master.
9 Jun 2019

Chem 165 2018

Submitted by Adam R. Johnson, Harvey Mudd College

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).

Subdiscipline: 
Corequisites: 
Course Level: 
9 Jun 2019

1FLO: PCET and Pourbaix

Submitted by Anne Bentley, Lewis & Clark College
Evaluation Methods: 

I graded each student’s problems as I would any other homework assignment, and they averaged about 80% on that part of the assignment. The other half of the total points for the assignment came from in-class participation.

Evaluation Results: 

We had a rich conversation about this article in class; it was probably one of the most interesting literature discussion conversations I’ve had. Although this was the only introduction to Pourbaix diagrams in the course, 12 of 15 students correctly interpreted a “standard” Pourbaix diagram on a course assessment.

 

Description: 

This set of questions is based on a single figure from Rountree et al. Inorg. Chem. 2019, 58, 6647. In this article (“Decoding Proton-Coupled Electron Transfer with Potential-pKa Diagrams”), Jillian Dempsey’s group from the University of North Carolina examined the mechanism by which a nickel-containing catalyst brings about the reduction of H+ to form H2 in non-aqueous solvent. Figure 3 in the article presents an excellent introduction to the use of Pourbaix diagrams and cyclic voltammetry to determine the mechanism of a proton-coupled electron transfer reaction central to the production of hydrogen by a nickel-containing catalyst.

Corequisites: 
Course Level: 
Learning Goals: 

Students should be able to:

-  identify atoms in a multidentate ligand that can coordinate to a metal as a Lewis base

-  outline the difference between hydride addition to a metal and protonation of a ligand in terms of changes to the overall charge of the complex

-  analyze a Pourbaix diagram to predict the redox potential and pKa of a species

Subdiscipline: 
Implementation Notes: 

I have discussed the challenge of integrating literature discussions into my inorganic course in a BITeS post and the VIPEr forums. Each spring I try something a little different. This year I used three articles from the literature to frame our review of course material at the end of the semester, with each literature discussion occupying a one-hour class meeting.

In each case, the students completed problems before coming to class. While these problems were based on the journal articles, they did not require the students to read / consult the journal articles in order to complete the assignment. The students brought an electronic or paper copy of the article to class. I usually put students in groups (approximately 3 per group) and gave each group new questions to work on, which did draw from the article. After some time working in groups, each group presented their material to the rest of the class.

In implementing this particular literature discussion, I didn’t have any further questions for them.  I walked through some of the other figures from the article (especially Figure 1).  We discussed the authors’ use of color in creating Figure 3. We also reviewed the significance of horizontal vs vertical vs diagonal lines. Because I had not covered Pourbaix diagrams in the course, the activity was a good introduction to the concept.

Because these problems don’t require consultation with the article, they are suitable to use on an exam.

Time Required: 
varies
9 Jun 2019

Triphenylphosphine: Transformations of a Common Ligand

Submitted by Bradley Wile, Ohio Northern University
Evaluation Methods: 

This lab report is graded using the attached rubric (see faculty files). 

Evaluation Results: 

Over the last four iterations of this lab, the average total score was ~42/50 (n = 21). Students are generally good at recognizing that a redox process is occurring, though some struggle with this realization. Most students generate a Lewis structure with a dative bond, though some do not use the MO diagram to infer a reasonable direction for the dative interaction. I typically work through this with the students, asking them questions like "which orbitals have electrons?" and "what orbitals are interacting in your Lewis depiction?" This has been a good introduction to these synthetic and instrumental methods, and gives the lab partners an opportunity to divide up their responsibilities.

Description: 

This experiment tasks students with preparing triphenylphosphine sulfide, and the corresponding I2 adduct, then characterizing these products using common instrumental methods. Students are asked to consider MOs and tie this to their Lewis bonding depiction for the final product. This discussion is supported by WebMO calculations and tied to the experimental data obtained by the student.

If you would like to use this lab, please complete the feedback form (faculty files) and let me know how you adapt it. I would like to publish this procedure (eventually), and I am open to collaborative projects to get this to the best final form.

Course Level: 
Prerequisites: 
Topics Covered: 
Learning Goals: 
After completing this lab report, students should be able to:
  • Construct an MO diagram for I2, and relate this to the bonding in the Ph3PS-I2 complex
  • Using MO theory as a basis, decide on the best Lewis representation for Ph3PS-I2
  • Discover the wealth of bonding modes within main group species
  • Identify changes in the observable spectra for P(III) and P(V) compounds
  • Search and reference the primary chemical literature using correct ACS reference formatting
 
Subdiscipline: 
Corequisites: 
Equipment needs: 

This experiment is run using our in house instumentation including:

  • NMR spectrometer capable of acquiring 1H and 31P spectra
  • IR spectrometer
  • UV-vis spectrometer (we acquire data on a Spec200 that works just fine for this)
  • GC-MS (optional)

These spectra are provided as faculty files. If you do not have any of these capabilities, the spectra may be given to students as a handout.

Additionally, the experiment will require use of round-bottomed flasks, condensers, beakers, scintillation vials, hot plates, and gravity filtration apparatus (stemless if hot filtration required). Solvents and reagents are typically already present in the department, or may be purchased at reasonable cost.

Implementation Notes: 

I use this lab as the first experiment of the semester, and begin the first week's activity after the introduction and lab safety discussion. 

Prior to running the experiment, I prepare approximately one batch of each product (Ph3PS and Ph3PS-I2) in case of a laboratory mishap. The products are indefinitely stable under ambient conditions.

I do not describe the reaction as a redox process, or suggest a bond order (i.e. I try to write the formula for Ph3PS with an ambiguous bond order, as shown here). 

Depending on the age of your bottle of Ph3P, you may spot a small quantity of Ph3P=O in the 31P spectrum (small peak around 30 ppm in the included spectrum). This may be an opportunity to discuss connections to biochemistry or atmospheric oxidation, or ask students to draw Lewis depictions of these species. 

I teach my students how to manually run their own NMR spectra using TopSpin at this point (they have previously learned 1H and 13C using the autosampler). I typically discuss the differences between 31P{1H} and 31P (non decoupled) spectra at this time. Note that the lab handout has some instructions specific to the Bruker software that may be updated if you use a different spectrometer.

Literature articles describing the crystal structure of the final adduct (and related I2 species) are linked here. I have not typically gone into great detail about this, as the assembled I2 ribbons can confuse the students that are just putting the basic concepts together.

Time Required: 
Two full 3 hour labs, and approximately 1 additional hour (first week). If characterization is done outside of normal lab hours, this could be accomplished in one full 3 hour lab and one additional hour.

Pages

Subscribe to RSS - No Corequisites