Inorganic Chemistry
Structure and bonding in inorganic systems are the general subjects of this course. Both main group and transition metal chemistry are discussed.
Structure and bonding in inorganic systems are the general subjects of this course. Both main group and transition metal chemistry are discussed.
This lecture course will introduce students to the interdependence of chemical bonding, spectroscopic characteristics, and reactivity properties of coordination compounds and complexes using the fundamental concept of symmetry. After reviewing atomic structure, the chemical bond, and molecular structure, the principles of coordination chemistry will be introduced. A basic familiarity with symmetry will be formalized by an introduction to the elements of symmetry and group theory. The students will use symmetry and group theory approaches to understand central atom hybridization, ligand
The hyperphysics website uses concept maps as a way to organize physics content knowledge: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html (condensed matter). I cam across this website while doing a review of the literature on what students know about semiconductors. There are nice explanations of many of the topics associated with semiconductors and they are organized in an unique way.
Four pairs of students represent quadruple bonding in metal complexes by "forming bonds" with a variety of physical methods involving actions like facing each other while holding hands (sigma bond), touch hands and feet of their partner "above and below" the plane (two pi bonds), touching hands and feet while facing each other (delta bond). This results in a "Twister"-like pile of students resembling the quadruple bonding interaction
This is a series of in-class exercises used to teach computational chemistry. The exercises have been updated and adapted, with permission, from the Shodor CCCE exercises (http://www.computationalscience.org/ccce). The directions provided in the student handouts use the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).
This is the fifth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).
This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.
This is the sixth in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce). It uses the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).
This course introduces the organometallic chemistry of the transition metals and main group elements with emphasis on common structural features and basic reaction types. The role of organometallic complexes in catalysis is also explored.