Descriptive Inorganic Chemistry

Submitted by Catherine McCusker / East Tennessee State University on Wed, 01/16/2019 - 16:26
Description

This course is designed to give an introduction to the concepts of electronic structure, bonding,

and reactivity in inorganic chemistry. The field is too vast to comprehensively cover every aspect in

a single semester, so this class will offer a qualitative overview of inorganic chemistry. Reading and

understanding scientific literature is an important skill for any scientist to have, whether you move

on to grad school, professional school, or the job market, so relevant literature articles will be

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 01/03/2019 - 18:02
Description

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.

5-ish Slides about Enemark-Feltham Notation

Submitted by Kyle Grice / DePaul University on Thu, 11/08/2018 - 22:00
Description

This is a basic introduction to Enemark-Feltham that can be used in conjunction with any literature that has Iron nitrosyls in it. I made this as a follow up to the work that came ouf of the 2018 VIPEr workshop in UM-Dearborn. 

Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.

Interactive Syllabus

Submitted by Amanda Reig / Ursinus College on Mon, 08/27/2018 - 22:58
Description

The Interactive Syllabus is a web-based survey delivery of syllabus content to your students prior to the first day of classes.  The web link below explains many of the features and advantages, but in my opinion some of the best benefits are (1) students actually engage with the content on the syllabus in meaningful ways, (2) it saves class time on the first day, and (3) can encourage students to share questions/concerns they may not have been as eager to share in person.

The survey is built on the qualtrics platform, but could be adapted for other programs.  

Descriptive Inorganic Chemistry

Submitted by RTMacaluso / University of Texas Arlington on Tue, 07/24/2018 - 14:26
Description

An overview of descriptive main group chemistry, solid state structures and the energetics of ionic, metallic, and covalent solids, acid-base chemistry and the coordination chemistry of the transition metals. The course is intended to explore and describe the role of inorganic chemistry in other natural sciences with an emphasis on the biological and geological sciences. Important compounds and reactions in industrial chemistry are also covered. Intended for both chemistry and non-chemistry majors.

Getting to Know the MetalPDB

Submitted by Anthony L. Fernandez / Merrimack College on Fri, 07/06/2018 - 11:29
Description

When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures.

Orbital Overlap and Interactions

Submitted by Jocelyn Lanorio / Illinois College on Mon, 06/25/2018 - 16:28
Description

This is a simple in-class activity that asks students to utilize any of the given available online orbital viewers to help them identify atomic orbital overlap and interactions. 

Bonding and MO Theory in Flavodiiron Nitrosyl Model Complexes - Advanced Level

Submitted by Cassie Lilly / NCSU on Sat, 06/23/2018 - 11:20
Description

The activity is designed to be a literature discussion based on Nicolai Lehnert's Inorganic Chemistry paper, Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.  The discussion questions are designed for an advanced level inorganic course.