Bonding in Tetrahedral Tellurate (updated and expanded)
This literature discussion is an expansion of a previous LO (https://www.ionicviper.org/literature-discussion/tetrahedral-tellurate) and based on a 2008 Inorganic Chemistry article
This literature discussion is an expansion of a previous LO (https://www.ionicviper.org/literature-discussion/tetrahedral-tellurate) and based on a 2008 Inorganic Chemistry article
Inorganic chemists often use IR spectroscopy to evaluate bond order of ligands, and as a means of determining the electronic properties of metal fragments.
This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever!
We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab.
In honor of Professor Richard Andersen’s 75th birthday, a small group of IONiC leaders submitted a paper to a special issue of
In this literature assignment, students are asked to read an article from the primary literature on a binuclear manganese-peroxo complex that is similar to species proposed to be involved in photosynthetic water splitting and DNA biosynthesis. The assignment contains 25 questions that are intended to guide students through the article and help them extract important information about the work. The completed questions are then used as the basis for an in-class discussion of model complexes, which leads to a more advanced discussion on the topic.
When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures. I also have students access structures both in and out of class as they complete assignments.
This is a great app that helps students see the symmetry in molecules. It allows you to choose a molecule (by name, structure, or point group) and display a 3D rendition of it. You can then have it display the symmetry elements, and/or apply all the symmetry operations.
It is available for both android and apple phones: (probably easier to just search for it)
apple: https://itunes.apple.com/us/app/3d-sym-op/id1067556681?mt=8
For inorganic lab, I have my students write their lab reports in the style of the journal Inorganic Chemistry. The first week of lab, we spend time in small groups looking at several examples of recent articles from Inorganic Chemistry, focusing mainly on the experimental section and the abstract (as these are included in every lab report). We then come back together as a class to have a discussion of each of the sections in the articles. We discuss what was included in each section, what wasn’t included, and the style, tone, tense, and voice of each section.
This in-class activity can be used to teach structural (or constitutional) isomers. This worksheet presumes that students have already had some experience with transition metal complexes such as determining metal oxidation state, recognizing the coordination sphere, and converting between formulas and structures.
Pulsed Gradient Spin Echo (PGSE) DOSY is a NMR technique used for determining the hydrodynamic radius of a molecule in solution by measuring the rate of diffusion. This technique requires a standard, usually tetrakis(trimethylsilyl)silane (TMSS). This activity will cover the basics of how PGSE works and includes built in animations to demonstrate how the nuclear magnetization is affected. Each slide has comments explaining the content for the user's convenience.