Molecular Orbitals of Square-Planar Tetrahydrides

Submitted by Matt Whited / Carleton College on Fri, 04/18/2014 - 10:15
Description

This in-class activity walks students through the preparation of a molecular-orbital diagram for methane in a square-planar environment.  The students generate ligand-group orbitals (LGOs) for the set of 4 H(1s) orbitals and then interact these with carbon, ultimately finding that such a geometry is strongly disfavored because it does not maximize H/C bonding and leaves a lone pair on C.

First use of the term "bioinorganic"

Submitted by Joshua Telser / Roosevelt University on Wed, 03/19/2014 - 20:19
Description

Thanks to information first provided to me by Prof. Brian M. Hoffman, Northwestern University, I believe that the first documented use of the term "bioinorganic chemistry" occurred at a meeting held at Virginia Tech (VPI&SU) in June, 1970. This meeting was jointly organized with Canadian researchers and was thus an international meeting.

This meeting resulted in an Advances in Chemistry Series book, which has the following URL:

http://pubs.acs.org/doi/book/10.1021/ba-1971-0100

Viewing Jmol Images and Animations (currently blocked) that call a Jmol Applet

Submitted by Marion Cass / Carleton College on Thu, 03/13/2014 - 22:31
Description

 

    Every day when I teach Inorganic Chemistry (and in most of my problem sets and take home exams) I create Web pages to show 3D images of selected molecules to my students.  I am a visual learner and I find the structures beautiful and informative.

    In the past few months, you likely have found that web sites scripted with Jmol scripts calling a Jmol applet (which is a Java applet) are blocked. 

Symmetry Lectures

Submitted by Sabrina Sobel / Hofstra University on Sat, 03/08/2014 - 16:00
Description

Two excellent video presentations on symmetry. The Ted Talk by Marcus du Sautoy is an excellent introduction to the concept of symmetry and systematically describing it. In "Impossible Crystals" Nobel Laureate and physicist Paul Steinhardt discusses the creation of "Impossible crystals": quasi-crystals with five-fold symmetry previously believed impossible.

Five Slides about Tanabe-Sugano Diagrams

Submitted by Sabrina Sobel / Hofstra University on Sat, 03/08/2014 - 15:32
Description

Brief introduction to d-orbital splitting, Russell-Saunders coupling, and application to UV-Vis spectroscopy using Tanabe-Sugano diagrams

Orbital Overlap Worksheet

Submitted by Vanessa / Albion College on Tue, 03/04/2014 - 22:43
Description

This exercise was developed to help students predict bonding between s,p and d atomic orbitals.

Water Oxidation Catalyzed by NHC Complexes of Iridium

Submitted by Peter M Graham / Saint Joseph's University on Wed, 02/19/2014 - 12:08
Description

A literature discussion based on an interesting paper from Bernhard and Albrecht about a catalytic water oxidation promoted by irdium complexes featuring abnormal/mesoionic NHC ligands.

I used this in an upper-level Organometallics course after discussing NHC ligands in class.

 

Molecular Orbital of Transition Metal Complexes

Submitted by Steven Neshyba / University of Puget Sound on Wed, 02/05/2014 - 21:39
Description

Students construct computer models of two transition metal complexes, solve their electronic structures, and inspect the resulting d-type molecular orbitals to identify which are non-bonding, sigma* antibonding, or pi* antibonding. After constructing a molecular orbital diagram, they determine which of the two complexes is likely to absorb light at a longer wavelength.

Student choice literature-based take home exam question

Submitted by Hilary Eppley / DePauw University on Fri, 01/24/2014 - 15:27
Description

During my junior/senior level inorganic course, we did several guided literature discussions over the course of the semester where the students read papers and answered a series of questions based on them (some from this site!).  As part of my take home final exam, I gave the students an open choice literature analysis question where they had the chance to integrate topics from the semester into their interpretation of a recent paper of their own choice from Inorganic Chemistry, this time with limited guidance.

Electronic Absorption Spectroscopy of Aquated Transition Metal Ions

Submitted by Zachary Tonzetich / University of Texas at San Antonio on Thu, 01/23/2014 - 12:07
Description

I developed this laboratory experiment for our instrumental analysis class. The course is taken by junior and senior chemistry majors, who for the most part have had one inorganic chemistry course and some physical chemistry. The laboratory is operationally very simple and has students record the UV-vis spectra of transition metal sulfate salts in water using volumetric technique. They record the molar absorptivities for each peak and use this data to determine the number of waters of hydration for each salt by comparing with literature absorptivity values.