Inorganic Chemistry I

Submitted by Todsapon T. / University of Evansville on Sun, 06/09/2019 - 08:54
Description

Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Inorganic Chemistry

Submitted by Leon / Stonehill College on Mon, 06/03/2019 - 11:32
Description

This course covers fundamentals of central topics in inorganic chemistry from historical to modern-day perspectives.  Topics include: coordination compounds (history, structure, bonding theories, reactivity, applications); solid state chemistry (crystals, lattices, radius ratio rule, defect structures, silicates & other minerals); and descriptive chemistry of the elements.

Inorganic Chemistry

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 05/22/2019 - 10:42
Description

This course introduces the chemistry of transition metals and main group elements. Topics include theories of bonding, kinetics and mechanisms of reactions of transition metal complexes, oxidation-reduction reactions, hard-soft acid-base theory, and solid-state chemistry. Applications of inorganic chemistry to other areas (organic, analytical, and physical chemistry, as well as biology and biochemistry) are highlighted throughout the course. The laboratory portion of the course involves the synthesis and spectroscopic investigation of inorganic complexes.

Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Tue, 03/26/2019 - 13:49
Description

This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.

1FLO: Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Fri, 03/22/2019 - 16:11
Description

This is what I hope will be a new classification of learning object called a one figure learning object (1FLO). The purpose is to take a single figure from a paper and present students with a series of questions related to interpreting the figure. This literature discussion is based on a paper (J. Am. Chem. Soc. 2011, 133, 9278) from Paula Diaconescu's lab in which a yttrium polymerization catalyst with a ferrocene-based ligand can effectively be rendered active or inactive depeneding on the valence state of the ligand.

Inorganic Chemistry

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 02/13/2019 - 14:25
Description

Catalog Description:  Concepts and models in inorganic chemistry with emphasis on atomic structure and bonding, molecular orbital theory, material science, and descriptive inorganic chemistry including biological and environmental applications.

Inorganic Chemistry

Submitted by Steven Girard / University of Wisconsin - Whitewater on Fri, 02/01/2019 - 11:58
Description

This course is composed of two components:

A. Lecture:

Inorganic Chemistry

Submitted by James F. Dunne / Central College on Tue, 01/29/2019 - 16:16
Description

This course is an introduction to the field of inorganic chemistry.  The student is expected to be well-versed in the material covered in general chemistry, as this will serve as the foundation and launching point for the material to be covered this semester. The course will begin by examining the properties of the elements, and expand outward to consider chemical bonding and the electronic factors that govern metal reactivity.  These factors include acid-base theory, thermodynamics, electrochemistry and redox, and coordination chemistry.