Trap-to-Trap Distillation of Volatile Organic Liquids (Polyhalomethanes)

Submitted by Craig M. Davis / Xavier University on Thu, 09/04/2014 - 12:45
Description

This lab exercise uses air-stable compounds (polyhalomethanes) to demonstrate trap-to-trap distillation, a technique used to separate air-sensitive compounds. The apparatus (including part numbers from CHEMGLASS) is described. In addition, slush baths are employed, which are a novelty for our Inorganic Laboratory course and a source of amazement for the students. The separation of the compounds (the percentage each compound in each trap) is determined by 1H NMR.

A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02
Description

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

The Japan syndrome

Submitted by Carmen Gauthier / Florida Southern College on Mon, 07/14/2014 - 17:38
Description

This is an in-class discussion of an article that appeared in The Economist.  It can be used to review several topics covered in the first year chemistry class.

Thinking scientifically about graphing: a classroom exercise for general chemistry

Submitted by Jen Look / Mercer University on Mon, 05/26/2014 - 19:09
Description

This excercise explains the basics of drawing graphs for an introductory chemistry class. It give examples of common pitfalls and how to avoid them. Students are guided through graphing a data set, adjusting axes, adding trend lines, modifying legends and adding appropriate labels. The excercise also provides several examples of graphs and asks students to critically evaluate them. 

Group Theory for Mathematicians

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/26/2014 - 14:18
Description

While informally chatting with friends in our math department, I realized that I could put together a presentation about how chemists use group theory.  I was invited to give the presentation as part of our math department's weekly colloquium series.  The talk was to be one hour in length, and my math colleague described their typical format as:

IC Top 10 first day activity

Submitted by Sheila Smith / University of Michigan- Dearborn on Thu, 09/05/2013 - 09:32
Description

I modified the Barb Reisner/Joanne Stewart/Maggie Geselbracht First Day TOC activity (https://www.ionicviper.org/class-activity/introducing-inorganic-chemist…) to take advantage of the quarterly list of Top 10 Most Read articles that IC sends out.  This is delivered to me as an email from ACS pubs and I am sure that it is available to anyone who wished to subscribe to the updates.  I have attached a pdf copy of the August 2013 update as an example.

Cmap: Concept Mapping Tool

Submitted by Amanda Reig / Ursinus College on Thu, 06/27/2013 - 16:17
Description

Cmap Tools is a powerful free program that can be used to create concept maps.  The program works on any platform.

Thanks to Kurt Birdwhistell for posting the link to this tool to the forum a while back.

Literature summary through student presentation - free choice of topic.

Submitted by Cameron Gren / University of North Alabama on Wed, 06/26/2013 - 07:59
Description

(1) Student choses and reads a journal article of his/her choice that is related to a topic we have discussed during the semester. (i.e. atomic structure, MO theory, group theory, solid state structure, band theory, coordination chemistry, organometallics, catalysis). Suggested journals include, but are not limited to JACS, Inorg. Chem., Organometallics, Angew. Chem., JOMC, Chem. Comm.)

(2) Student answers the following questions regarding their chosen article:

    (a) Describe, in 1 or 2 sentences the goal of this work. 

Chemical Acrostics for Fun and Active Learning

Submitted by Charles Mebi / Arkansas Tech University on Tue, 06/25/2013 - 06:14
Description

Chemical acrostic is used as a teaching tool in descriptive inorganic chemistry. This is an active learning approach to engage the students with a fun classroom activity. The acrostics are designed by Simon Cotton and published in the Royal Society of Chemistry's education resource magazine "The Mole." The students are divided into groups of two or three to work on the acrostics. To come up with the answers, the students engage in meaningful group discussions that enhance conceptual understanding.