First year

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

12 Mar 2020

iPad Screen Recording

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

I do not assess their performance on creating the videos. The fact that they are able to submit the videos to me successfully is evidence that they have followed the instructions.

I have students peer-review videos created by other students. They are asked to provide feedback on the content and correctness of the video, as well as the quality of the presentation.

Evaluation Results: 

Students and faculty usually have little trouble following these instructions. The most common errors are listed below.

  • The video creator forgets to turn on the audio recording before beginning the screen recording process.
    • If this happens, the video must be re-recorded with the microphone on or the audio must be added using another program, such as iMovie.
  • The video cannot be edited to remove the "dead time" at the beginning and end of the video.
    • The iPad screen is very touchy and it can be hard to get the video selected and highlighted. It takes a bit of practice.
  • The video creator exports a video without sound.
    • This means that the iPad is running an older version of the iOS and the other set of instructions must be followed.
Description: 

Many faculty and students now have iPads and Apple Pencils for use in their classes. At Merrimack, we have a 1:1 iPad program (called Mobile Merrimack) in which all students and faculty are provided an iPad and students are also given an Apple Pencil and a keyboard. (Departments must purchase Apple Pencils for faculty members.) My department has leveraged this initiative in many ways and the iPad has been incorporated into the general chemistry and organic chemistry sequences, and into many of our upper-level courses.

The iPad is a really great tool for creating educational videos for classes, especially when paired with an Apple Pencil to facilitate writing on the screen in a very natural manner. It is very easy to create videos on your iPad using the Screen Recording Feature that is part of recent version of the iOS. When the Screen Recording is activated, anything shown on the iPad screen is captured to video and audio can be recorded using the built-in microphone or any connected microphone. My go-to iPad app for handwriting is Notability and I use the screen recording function to capture my writing and audio. Any app that you prefer can be used. (I have attached two videos as examples - one with audio and one without audio.)

My colleagues and I use the iPad to create videos that we distribute to our classes via our LMS (Blackboard or Google Classroom). I have also given my students the opportunity to demonstrate mastery of topics and concepts by creating narrated videos on their iPad and submitting them to me for credit (or for extra credit when revising exams). The linked instructions are those that I provide to my students and colleagues so that they can create videos on their own.

I have tried to keep these up to date with the changes in the operating system and I would appreciate any feedback that you have on these instructions. There are two versions of the instructions linked to this LO: one for current version (13) of the iOS and one for older versions of the iOS. I would also be happy to add any other information that you feel is necessary as you work through the recording process.

Please feel free to reach out to me if you need any help.

Topics Covered: 
Corequisites: 
Prerequisites: 
Learning Goals: 

After reading these instructions, a student or faculty member should be able to:

  • start the screen recording function on an iPad,
  • record a video that captures the iPad screen along with audio from a microphone,
  • save the video in their photo stream,
  • edit out the portions at the beginning and end of the video, and
  • export the video to a cloud service for sharing with others.
Implementation Notes: 

There are many ways to create videos on the iPad and some of those involve apps that cost money to purchase. This method for recording videos takes advantage of functionality built into iOS and will record anything shown on the iPad screen.

As mentioned in the description, I use this method to create videos for my students. I also provide these instructions to my students so that they can create videos that they can submit to me. 

Time Required: 
variable; depends on the length of the video
2 Mar 2020

ChemCrafter

Submitted by Michelle Personick, Wesleyan University
Evaluation Methods: 

Student learning is not assessed directly after the activity, but rather is assessed indirectly through student performance on related homework and exam questions. More specifically, the second section of the exams in my general chemistry course always asks students to "provide a concise (but complete) explanation or rationalization for [some number] of the following statements." This section is particularly suited to assessing the learning goals above.

Evaluation Results: 

This activity was recently introduced, and student performance has not been evaluated yet.

Description: 

ChemCrafter, from the Science History Institute (formerly the Chemical Heritage Foundation), is a free iPad app that mimics a classic chemistry set. It is set up as a game, with three sections: reactions with water, reactions with acid, and salts. The app shows the progress of the reaction (smoke, color change, etc.) when two elements are mixed in a reaction vessel, and also gives the change in enthalpy of the reaction.

Pros: It's a safe and fun way to demonstrate some visually exciting chemical reactions. It's free and the graphics are high quality. The app projects well on a large screen using a standard classroom projector.

Cons: Accessing later sections of reactions requires completion of the previous sections, and there is some artificial gating of chemical and glassware replenishment behind wait times. As a result, it's best used as a demo rather than as a dry lab. It's also only available for the iPad.

 

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

Students should be able to explain the difference between thermodynamics and kinetics.

Students should be able to explain why even thermodynamically favorable reactions sometimes do not proceed on an observable timescale.

Students should be able to explain why heat is sometimes necessary to make a highly exothermic reaction proceed.

Implementation Notes: 

Once everything is unlocked, it's possible to set up any reaction using the chemicals in the given "set" for each category of reaction. I use ChemCrafter in my second semester general chemistry course to transition from a unit on reactions of ions in aqueous solution (hydration/hydrolysis, Bronsted acid/base and hard-soft acid base principles of solubility/reactivity, etc.) to a unit on kinetics. I show a series of reactions from the salt section that the students would expect to have roughly increasing enthalpies of lattice formation based on the Born-Lande equation:

[Note: All reactants are in their elemental form in the app, so the enthalpies of formation aren't truly lattice energies.]

2 Na + Cl2 --> 2 NaCl   (1+ cation with a 1- anion) 

2 K + F2 --> 2 KF (1+ cation with a 1- anion)

Zn + Cl2 --> 2 ZnCl(2+ cation wtih a 1- anion)

These combinations were selected because their reactions in the app become increasingly dramatic (and colorful) in this order. I then show the students a set of reactions that they would expect to be even more exciting, but which don't actually proceed without heat. They hold their breath for the first one to react.

Zn + S --> ZnS (2+ cation with a 2- anion)

2 Al + 3 I2 --> 2 AlI3 (3+ cation with a 1- anion)

The app provides an option for heating these mixtures of elements with a bunsen burner, and then they react dramatically. At this point, we're ready to discuss the difference between thermodynamics--which is all they've seen up to this point--and kinetics.

Time Required: 
5-10 minutes of class time
17 Jan 2020

Formal oxidation states in Ru-catalyzed water oxidation

Submitted by Margaret Scheuermann, Western Washington University
Evaluation Methods: 

I did not grade this activity.

Evaluation Results: 

Three students out of 14 explicitly mentioned that this activity was helpful on the free response section of the course evaluations.

Description: 

This LO is an in-class assignment to prepare students for literature readings involving catalytic cycles in which multiple protons and electrons are transferred. Students practice assigning oxidation states to complexes with aquo, oxo, superoxo, and hydroperoxo ligands then use this information to analyze a proposed water oxidation mechanism from the literature.

Students are asked to add in the substrates and products entering and leaving the catalytic cycle. While this is, at its heart, a stoichiometry excercise, it helps calibrate students for the level of attention to detail needed to effectively engage with reading about multi-electron catalytic mechanisms.

Learning Goals: 

After completing this activity:

A student should be able to assign formal oxidation states to monometallic complexes with aquo, oxo, hyrdoperoxo, and superoxo ligands

A student should be able to apply their knowledge of formal oxidation states to the analysis of a proposed mechanism of a catalytic water oxidation reaction

Corequisites: 
Subdiscipline: 
Prerequisites: 
Implementation Notes: 

I used this activity during a lab lecture before an inorganic laboratory experiment in which students would be preparing and testing the Ru-based OEC mimic. 

I began the class period with a brief review of L/X type ligands and formal oxidation states. 

Students then worked in groups to complete this activity. 

 

Other implementation options:

While I used this activity as part of a lab lecture it could also be used in a lecture setting or as part of a problem set.

It could also be modified for use as an equation balancing excercise in a majors or honors general chemistry course.

Time Required: 
10-20 minutes
16 Jan 2020

Time-Integrated Rate Laws and the Stability of Gold(III) Anticancer Compounds

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 

1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

Description: 

This is a flipped classroom module that covers the concepts of time-integrated rate laws. This activity is designed to be done at the end of the typical second quarter/second semester general chemistry kinetics unit. Students will be expected to have learned the following concepts prior to completing this activity:

a) how instantaneous rates of reactions are determined by measuring changes in concentration of reactants and/or products at the beginning of the reaction;

b) understanding basic rate laws and how rate laws are determined for a chemical reaction using instantaneous rates;

c) understanding why the rates of reactions slow down as the time of reaction increases.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 

Learning Goals: 

Students are expected to achieve the following learning goals:

a) conceptually understand how time-integrated rates laws can be used to describe the kinetics of a chemical reaction;

b) use time-integrated rate laws to determine the rate constant for a first or second order reaction;

c) use time-integrated rate laws to determine the half-life of a decomposition reaction;

d) use Excel to plot time-integrated rate laws and generate best-fit linear trend lines.

 

Corequisites: 
Equipment needs: 

Students need a laptop or tablet device capable of operating a spreadsheet/graphing program. 

Course Level: 
Prerequisites: 
Topics Covered: 
Subdiscipline: 
Implementation Notes: 

See attached instructor notes. 

Time Required: 
50-80 minutes
9 Jan 2020

Marvin suite from ChemAxon

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

As my students draw structures, I usually observe them and make suggestions to improve their drawings. 

Evaluation Results: 

While I do no formal assessment of this activity, I have observed that students seem to learn how to use the program fairly quickly and then use it without much difficulty for the rest of the semester.

Description: 

It is important for students to be able to effectively communicate the results of their scientific work. This does not only inlcude written and oral communication, but the creation of appropriate representations of the complexes they have investigated. It is crucial that students learn how to draw molecules using electronic structure drawing programs, but site licenses for structure drawing programs can be prohibitive for some institutions.

Marvin suite is a software package from ChemAxon that is freely avaialble for educational institutions. It contains a structure drawing program (MarvinSketch) and a viewer (MarvinView), as well as tools that allow for the calculation of many molecular and spectroscopic properties of molecules. This is a very useful suite of programs that can be used by all students and faculty at an instituion once an Academic License is obtained.

A set of directions for drawing a coordination complex in MarvinSketch is also included as part of this learning object. These directions will guide the user as they draw the structure of a square-planar coordination complex, trans-[Ni(NCS)2(PMe3)2].

Corequisites: 
Prerequisites: 
Learning Goals: 

After following the instructions, students should be able to draw a chemical structure electronically using a chemical structure drawing program.

Once the structure in drawn in the program, a user would then be able to access the many other functions available in the software.

Implementation Notes: 

During the first week of our semester, lab sections are usually not held for courses so that student enrollment issues can be sorted out. In an advanced course such as Inorganic Chemistry, I want to take advantage of every week that I can so I use the first lab meeting time to have students learn how to use several software programs that they wil use over the course of the semester. 

I post the download link and the license file for the software on the course LMS before the lab period and I ask the students to download and install the software. You should make sure that students update their Java installation before installing the Marvin suite. (I also place a link to the Java download site on the course LMS as well, but students tend to ignore it.) Aside from the Java issue, I have found that there are no real issues encountered by students when they install the software. 

When we meet, I ask the students to follow the linked instructions to create a drawing of a coordination complex. Once they complete that successfully, I ask them to draw several other structures. I do not  have any specific structures that I use, but I try to choose complexes with different geometries (octahedral, tetrahedral, square pyramidal, etc.) around the metal center.

The Marvin suite of programs provides the students with a number of useful tools, not just a structure drawing progam. Students use this to calculate or estimate a number of different things, such as the molecular mass, the elemental analysis, a mass spectrum, 1H and 13C NMR, and charge distribution.

To obtain a license file, the faculty member must log into the ChemAxon site and request an Academic License. Once approved, the instituion is allowed to use the software for 2 years and the license can be easily renewed when it expires.

 

Time Required: 
30 minutes
8 Jan 2020

How to Read a Journal Article: Analyzing Author Roles and Article Components

Submitted by Catherine McCusker, East Tennessee State University
Evaluation Methods: 

Follow up small group work with a class discussion of the correct answers. Grade students on participation and completness

Description: 

This literature discussion uses a recently published article on solvatochromic Mo complexes to introduce students to the different components of a research article. The activity is divied into to two parts. Before class students read the paper and focus on defining terms, investigating the "meta" data of the paper, and the different sections iof the paper. In class the students work in groups to investigate the scientific content of the paper

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Students should be able to:

  • Interpret the roles that authors play in a research project
  • Recognize the different sections of a research article and the purpose of each section
  • Understand how to access supporting information and the type of information found there
  • Find key conclusions of a research paper and the experimental evidence the author used to make those conclusions
Time Required: 
~30 min (if students complete part 1 before class)
8 Jan 2020
Evaluation Methods: 

I usually grade one student handout per pair and typically have 1 pt per answer on the worksheet, but take the total out of 60 pts (which ends up giving them a couple of free points).  

Evaluation Results: 

Last semester my 17 students had an average of 47 out of 60 on the lab--a bit lower than usual for that lab. The high was a 57 and the low was a 39. There were lots of different individual errors, but errors in identifying which of the first structures were closest packed and errors in % of holes occupied were common. 

Description: 

This first-year laboratory is designed to give students an introduction to basic solid-state structures using both CrystalMaker files and physical models. I think this would work in a foundations level inorganic course as well. It could be used alternatively as an in-class activity or take-home problem set depending on the instructor. It was adapted by me and later, David Harvey, from an original activity that was posted as an educational resource on the CrystalMaker website in the mid 2000s.  

Prerequisites: 
Corequisites: 
Learning Goals: 

Students will be able to

  • articulate how the atoms in a simple cubic, face-centered cubic, and body-centered cubic unit cell are arranged
  • determine the coordination number of particular atoms in a unit cell
  • count the atoms or ions in a unit cell and determine the empirical formula based on that
  • determine the length of a side of a unit cell based on the radius of an atom
  • visualize the holes in different kinds of unit cells and see how ionic solids can be built by putting ions in those holes
  • describe the forces holding different solids together
  • calculate the % of filled and empty space in lattices
  • identify closest packed structures
Equipment needs: 
  • Computer lab (approximately two students per computer) with CrystalMaker installed (it can be the student version if necessary)

and/or

  • Box of pennies
  • Mineral samples of calcite, fluorite, and NaCl (if you want to do the bonus)
Implementation Notes: 

I usually take one day of class to introduce students to CrystalMaker and all of the basic definitions and ideas of this lab before they start working on the stations. Typically I will work through the first station and then part of NaCl to show them some of the main ideas they will be using, asking them to provide answers (which are typically wrong on the first try!). I am typically circulating around answering questions as the students work through the lab. For a lab section of 24 working in 12 pairs, having one set of physical models seems adequate, but particularly at the beginning of the lab it might be helpful to have two sets of the face-centered cubic and body-centered cubic structures. The 12 computer "stations" are arranged in folders inside a Solid State Lab folder on the desktop of the lab computers, so students can just click on the correct folder and correct files as they work their way through the lab.

Time Required: 
3h lab period
2 Jan 2020

Reaction Mechanisms: Energy Profiles and Catalysts

Submitted by Wesley S. Farrell, United States Naval Academy
Evaluation Methods: 

Students will report answers to the class.  The instructor should use the quality of these responses to gauge understanding.

Evaluation Results: 

N/A

Description: 

This in class activity consists of two demonstrations to be performed by the instructor, followed by a worksheet that students may work on independently or in groups.  The demonstrations allow the students to determine when a reaction has occured, when it has not occured, and generate qualitative reaction energy profiles to match these observations.  This activity is designed to take place during a description of kinetics in general chemistry. Detailed descriptions of the procedure and activity may be found in the "Overview for Instructor."

Learning Goals: 

Students should be able to create qualitative reaction energy profiles which match a series of reactions, catalyzed and uncatalyzed.

Subdiscipline: 
Equipment needs: 
  • Three 8” test tubes
  • 3% H2O2
  • Small cubes of potato, both raw and cooked
  • 250 mL Erlenmeyer flask
  • Pt spiral (preferably in glass tube with hook for support)
  • Methanol
  • Bunsen burner (with striker)

 

Course Level: 
Corequisites: 
Prerequisites: 
Topics Covered: 
Implementation Notes: 

Please see the "Overview for Instructor" document for implementation notes.

Time Required: 
15 minutes
5 Dec 2019

Flipped Class Module - Lewis Structures of Industrially and Environmentally Relevant Molecules

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 

1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

Description: 

This is a flipped classroom activity intended for use in a first semester general chemistry course. Students are expected to have prior knowledge in identifyng the difference between molecular and ionic compounds, understanding the conceptual framework for how covalent bonds form, and how to draw Lewis dot symbols for atoms, and how to determine the number of valence electrons for atoms.



The activity includes:

1) pre-lecture learning videos that guide students through learning how to draw valid Lewis structures, determining how to caculate the formal charge for atoms in molecular compuonds/Lewis structures, and using formal charge to determine which Lewis structure is most stable if multiple Lewis structures are possible for a given molecule;

2) pre-lecture quiz questions; and

3) an in-class activity that requires students to apply their knowledge of chemical bonding in drawing Lewis structures.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Learning Goals: 

Students should be able to:

a) draw Lewis structures of molecular compounds;

b) determine the formal charge of atoms in molecular compounds;

c) use formal charge to predict the most stable Lewis structure.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Course Level: 
Corequisites: 
Prerequisites: 
Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes

Pages

Subscribe to RSS - First year