First year

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

15 May 2019

Rates of Chemical Reactions

Submitted by Will, Bucknell University
Evaluation Methods: 

A short problem set is assigned with the video

Evaluation Results: 

Most students are able to learn the content in this video independently

Description: 

Part 9 of the Flipped Learning in General Chemistry Series. This video explores the concept of reaction rate and shows how the rates of change of reactant and product concentrations vary during the course of a reaction.

Prerequisites: 
Corequisites: 
Course Level: 
Topics Covered: 
Subdiscipline: 
Learning Goals: 

After watching this video and completing the assigned problems, students should be able to define the rate of a chemical reaction, determine a rate (average or instantaneous) from a plot of concentration vs time data, and understand how the overall rate of a reaction is related to a balanced chemical equation.

Time Required: 
10-15 minutes
6 May 2019
Evaluation Methods: 
  • The instuctor walked around the classroom to help students individually as needed for immediate assessment.
  • At the end of the class period, students submitted their work to Blackboard for grading.
  • Assignments were graded based on accuracy and quality of the drawings.
Evaluation Results: 

Students generally were able to determine the molecular formula and generate connectivity drawings of the displayed 3-D structures, but really struggled with 3-D drawing. Although this was developed for a course with second year students who had completed general chemistry, even older students in the course struggled with this component. However, by the end of class, all students greatly improved in their ability to understand, interpret, and convey 3-D structure. 

Many students were surprised and many jokes were made about this being a chemistry art class. Although some students didn't particularly enjoy drawing, all understood the value and felt like they had learned something useful. At the end of the semester, many students remarked that the chemical drawing section was the most useful or interesting. 

Description: 

This in-class activity was designed for a Chemical Communications course with second-year students. It is the first part of a two-week segment in which students learn how to use Chemdraw (or similar drawing software) to create digital drawings of molecules.

In this activity, students are given a blank worksheet and 5 models of molecules were placed around the classroom. Students interpreted the 3-D models to determine molecular formulas, connectivity, and generate drawings that convey the 3-D elements. Once students completed the worksheet by hand, they generated the whole worksheet using Chemdraw.

Learning Goals: 

Students will be able to:

1.    Write the formula for a molecule based on a 3-D structure.

2.    Draw a molecule based on a 3-D structure.

3.    Convey 3-D structure of a molecule in a drawing.

4.    Translate molecular connectivity to a drawing that conveys 3 dimensions.

5.    Create digital drawings of molecules using Chemdraw or similar chemical drawing software.

Equipment needs: 
  • Molecular model set for the instructor to prepare structures before class.
  • One computer per student with chemical drawing software such as Chemdraw.
Course Level: 
Implementation Notes: 

Prior to the activity, students were given a brief presentation with an introduction to basic Chemdraw elements using the Chemdraw manual and existing tutorials (see links provided). VSEPR was also reviewed.

For the activity, students were given 3-D models of molecules, and the color key for atom identity was written on the board (eg. blue = oxygen, black = carbon...). The activity was conducted in a class of 24 students, in which each student had access to a computer. The entire class period was 1 hour 50 min, but the activity could be shortened if fewer molecules are included.

Before class, the instructor built models of molecules using a molecular model kit. It is helpful to have multiple copies of each molecule, especially for a larger class, but not critical. The molecules used for the acitvity can be seen in the faculty-only key, and were chosen to have a range of 3-D structures, but other molecules could be chosen. For example, a coordination chemistry or upper division course could have 3-D printed models of crystal structures used as the starting point. 

Time Required: 
60 min
3 Jan 2019

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith, University of Michigan- Dearborn
Evaluation Methods: 

I did not assess this piece, except by participation in the discussion

Evaluation Results: 

I asked my students to write an open ended essay to answer the question (asked in that first day exercise): What is Inorganic Chemistry.

Interestingly, 2 of my 15 students drew a version of this Venn Diagram to accompany their essays.

Description: 

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.  As the discussion unfolded, I just sort of started spontaneously drawing a Venn Diagram on the board.  

I think Venn diagrams are an excellent logic tool, one that is too little applied these days for anything other than internet memes.  This is a nice little add-on activity to the first day.
 

Your Venn diagram will likely look different from mine.  You're right.

 

Learning Goals: 

The successful student should be able to:

  • identify the various sub-disciplines of inorganic chemistry.  
  • apply the rules of logic diagrams to construct overlapping fields of an Venn diagram.

 

Prerequisites: 
Corequisites: 
Equipment needs: 

colored chalk may be handy but not required.

Implementation Notes: 

I used this activity in conjuction with a first day activity LO (also published on VIPEr).

I shared a clean copy (this one) with the students after the class where we discussed this.

 

Time Required: 
10-15 minutes
17 Nov 2018

Quantum Numbers and Nodes: A General Chemistry Flipped Classroom Module

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 
1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

 

 

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

Description: 

This is a flipped classroom module that covers the concepts of quantum numbers, and radial and angular nodes. This activity is designed to be done at the beginning of the typical first quarter/first semester general chemistry course (for an atoms first approach; if instructors use a traditional course structure this unit is likely done towards the middle/end of the first quarter/semester). Students will be expected to have learned the following concepts prior to completing this activity:

a) quantization of energy in the atom and the Bohr model of the atom;

b) how the wave/particle duality of electrons was described by de Broglie;

c) how the wave/particle duality of electrons was used by Schrodinger to develop the quantum mechanical model of the atom;

d) how radial probability distribution was used to generate the idea of atomic orbitals, and orbital probability surfaces.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 

 

 

Learning Goals: 

a) describe the meaning of the quantum numbers n, l, and ml;

b) determine the values of the quantum numbers n, l, and ml;

c) describe the meaning of radial and angular nodes;

d) determine the number of radial and angular nodes on different types of atomic orbitals;

e) begin to understand the correlation between the quantum numbers and the total number of atomic orbitals for a given atom, and how the periodic table can be used to build up the overall orbital structure for an atom.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Course Level: 
Corequisites: 
Prerequisites: 
Topics Covered: 
Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes
8 Nov 2018

5-ish Slides about Enemark-Feltham Notation

Submitted by Kyle Grice, DePaul University
Description: 

This is a basic introduction to Enemark-Feltham that can be used in conjunction with any literature that has Iron nitrosyls in it. I made this as a follow up to the work that came ouf of the 2018 VIPEr workshop in UM-Dearborn. 

Corequisites: 
Learning Goals: 

A student will be able to detemine the Enemark-Feltham label for a simple iron nitrosyl

A student will be able to describe bonding differences between NO+, NO, and NO- ligands. 

Implementation Notes: 

I haven't used this yet, but It can be a quick lecture module or online module to help students understand Enemark-Feltham before analyzing a paper on iron nitrosyls. 

Time Required: 
10 min
Evaluation
Evaluation Methods: 

I have not used this yet. 

Evaluation Results: 

I have not used this yet. 

22 Oct 2018
Evaluation Methods: 
1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

 

Evaluation Results: 
Students generally score on average 70% or higher on the pre-lecture quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

 

Description: 

This is a flipped classroom activity that is intended for use in a college-level first semester/first quarter general chemistry course, and aims to provide a real-world context for thermochemistry concepts by focusing on the problem of producing hydrogen fuel in a sustainable manner. Current industrial production of hydrogen relies on extracting hydrogen from hydrocarbon molecules. Producing hydrogen in this manner brings about the obvious problem of relying of fossil fuels for a “sustainable” fuel. In this activity students will become familiar with the advantages and disadvantages of using water as a source for hydrogen, learn how steam reforming of ethanol is being used as a hydrogen source, and will use enthalpy calculations to compare the thermochemical properties of these different reactions.

Acknowledgement: This material is based upon work supported by the National Science Foundation under Grant No. 1504989. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 

 

Learning Goals: 

a) using standard heats of formation to calculate the enthalpy for reactions;

b) comparing the enthalpies of different reactions and evaluating which reactions are more spontaneous from a thermochemical standpoint;

c) evaluate different reactions used to produce hydrogen fuel for use in fuel cell vehicles based on the enthalpy of the reactions;

d) gaining appreciation for research that aims to develop methods of producing sustainable fuel sources and why researchers and/or policy makers would be interested in developing sustainable fuel sources.

 
Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Topics Covered: 
Prerequisites: 
Corequisites: 
Subdiscipline: 
Course Level: 
Implementation Notes: 

See attached instructor notes. 

Time Required: 
50-80 minutes
27 Aug 2018

Interactive Syllabus

Submitted by Amanda Reig, Ursinus College
Description: 

The Interactive Syllabus is a web-based survey delivery of syllabus content to your students prior to the first day of classes.  The web link below explains many of the features and advantages, but in my opinion some of the best benefits are (1) students actually engage with the content on the syllabus in meaningful ways, (2) it saves class time on the first day, and (3) can encourage students to share questions/concerns they may not have been as eager to share in person.

The survey is built on the qualtrics platform, but could be adapted for other programs.  

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I implemented the approach in my General Chemistry I course this fall, and will likely adapt for all future courses.  I based my survey on the one that can be obtained at the website, but did make modifications. I have uploaded a pdf of my version of the survey, and would be happy to share the Qualtric Survey File to anyone interested (it is not an allowed file type so cannot be posted here).

I sent an email to students on Friday before classes began Monday morning containing a PDF of the syllabus and the link to the survey.  I did not assign any points for completion of the survey - just asked them to do so before 8 pm on Sunday (so I would have time to review their answers).  I sent a reminder email mid-day on Sunday.  I had around an 85% response rate.  I estimate it takes around 15 - 20 minutes for a student to work through.  It took around 2 hours for me to adapt the survey to my own preferences based on my syllabus.

7 Aug 2018
Description: 

Rules for quantum numbers are confusing but not arbitrary.  They are based on wave mathmatics, and once laid out properly are symmetric and beautiful.  Within four animation-clicks of the first slide of this PowerPoint Presentation, this beauty will unfold.  I do not exaggerate to say, faculty members will be agape and students will say, "Why didn't you show us this before."  No other presentation shows in as elegant a way the relationship between 1)  n, l and ml, 2) the ordering of orbitals in hydrogen-like atoms, and 3) the ordering of orbitals in the periodic table (along with the difficulty of assigning orbital filling in transition and f-block elements).  

Beauty is in every atom.  Let it loose.

Topics Covered: 
Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

A student will be able to relate the quantum numbers n, l and ml to each other.

A student will be able to correctly describe the number of subshells and number of orbitals in a shell.

A student will be able to describe the orbital energies in a hydrogen-like atom.

A student will be able to order subshells in a multi-electron system and relate this to the periodic table.

A student will realize the symmetry and beauty of quantum chemistry without ever seeing the shape of one orbtal.  

Implementation Notes: 

In the first two slides, often use the phrase "because it's a square."

This is useful for Inorganic Chemistry students as well because it will cement in their mind long lost rules of quantum numbers.

 

Evaluation
Evaluation Methods: 

1) Short answer quiz questions

2) Multiple choice questions on hour and final exams.

3) Awe.

Evaluation Results: 

1) From a quiz killer to a typical A, B, C student gets it right, the D student is still a bit confused and the F student still misses the idea.

2)  On a question asking, "how many orbitals in the n=3 shell", the results increased from the 40's to 80's %.  

3) As jaws dropped, quarters could be slipped into their mouths.  Faculty pulled out phones to take pictures of a white-board version before I told them I had a PowerPoint version.

Pages

Subscribe to RSS - First year