First year

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

3 Jan 2019

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith, University of Michigan- Dearborn
Evaluation Methods: 

I did not assess this piece, except by participation in the discussion

Evaluation Results: 

I asked my students to write an open ended essay to answer the question (asked in that first day exercise): What is Inorganic Chemistry.

Interestingly, 2 of my 15 students drew a version of this Venn Diagram to accompany their essays.

Description: 

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.  As the discussion unfolded, I just sort of started spontaneously drawing a Venn Diagram on the board.  

I think Venn diagrams are an excellent logic tool, one that is too little applied these days for anything other than internet memes.  This is a nice little add-on activity to the first day.
 

Your Venn diagram will likely look different from mine.  You're right.

 

Learning Goals: 

The successful student should be able to:

  • identify the various sub-disciplines of inorganic chemistry.  
  • apply the rules of logic diagrams to construct overlapping fields of an Venn diagram.

 

Prerequisites: 
Corequisites: 
Equipment needs: 

colored chalk may be handy but not required.

Implementation Notes: 

I used this activity in conjuction with a first day activity LO (also published on VIPEr).

I shared a clean copy (this one) with the students after the class where we discussed this.

 

Time Required: 
10-15 minutes
17 Nov 2018

Quantum Numbers and Nodes

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 
1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

 

 

 

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. 

Description: 

This is a flipped classroom module that covers the concepts of quantum numbers, and radial and angular nodes. This activity is designed to be done at the beginning of the typical first quarter/first semester general chemistry course (for an atoms first approach; if instructors use a traditional course structure this unit is likely done towards the middle/end of the first quarter/semester). Students will be expected to have learned the following concepts prior to completing this activity:

a) quantization of energy in the atom and the Bohr model of the atom;

b) how the wave/particle duality of electrons was described by de Broglie;

c) how the wave/particle duality of electrons was used by Schrodinger to develop the quantum mechanical model of the atom;

d) how radial probability distribution was used to generate the idea of atomic orbitals, and orbital probability surfaces.

 

Learning Goals: 

a) describe the meaning of the quantum numbers n, l, and ml;

b) determine the values of the quantum numbers n, l, and ml;

c) describe the meaning of radial and angular nodes;

d) determine the number of radial and angular nodes on different types of atomic orbitals;

e) begin to understand the correlation between the quantum numbers and the total number of atomic orbitals for a given atom, and how the periodic table can be used to build up the overall orbital structure for an atom.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Course Level: 
Corequisites: 
Prerequisites: 
Topics Covered: 
Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes
8 Nov 2018

5-ish Slides about Enemark-Feltham Notation

Submitted by Kyle Grice, DePaul University
Description: 

This is a basic introduction to Enemark-Feltham that can be used in conjunction with any literature that has Iron nitrosyls in it. I made this as a follow up to the work that came ouf of the 2018 VIPEr workshop in UM-Dearborn. 

Corequisites: 
Learning Goals: 

A student will be able to detemine the Enemark-Feltham label for a simple iron nitrosyl

A student will be able to describe bonding differences between NO+, NO, and NO- ligands. 

Implementation Notes: 

I haven't used this yet, but It can be a quick lecture module or online module to help students understand Enemark-Feltham before analyzing a paper on iron nitrosyls. 

Time Required: 
10 min
Evaluation
Evaluation Methods: 

I have not used this yet. 

Evaluation Results: 

I have not used this yet. 

27 Aug 2018

Interactive Syllabus

Submitted by Amanda Reig, Ursinus College
Description: 

The Interactive Syllabus is a web-based survey delivery of syllabus content to your students prior to the first day of classes.  The web link below explains many of the features and advantages, but in my opinion some of the best benefits are (1) students actually engage with the content on the syllabus in meaningful ways, (2) it saves class time on the first day, and (3) can encourage students to share questions/concerns they may not have been as eager to share in person.

The survey is built on the qualtrics platform, but could be adapted for other programs.  

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I implemented the approach in my General Chemistry I course this fall, and will likely adapt for all future courses.  I based my survey on the one that can be obtained at the website, but did make modifications. I have uploaded a pdf of my version of the survey, and would be happy to share the Qualtric Survey File to anyone interested (it is not an allowed file type so cannot be posted here).

I sent an email to students on Friday before classes began Monday morning containing a PDF of the syllabus and the link to the survey.  I did not assign any points for completion of the survey - just asked them to do so before 8 pm on Sunday (so I would have time to review their answers).  I sent a reminder email mid-day on Sunday.  I had around an 85% response rate.  I estimate it takes around 15 - 20 minutes for a student to work through.  It took around 2 hours for me to adapt the survey to my own preferences based on my syllabus.

7 Aug 2018
Description: 

Rules for quantum numbers are confusing but not arbitrary.  They are based on wave mathmatics, and once laid out properly are symmetric and beautiful.  Within four animation-clicks of the first slide of this PowerPoint Presentation, this beauty will unfold.  I do not exaggerate to say, faculty members will be agape and students will say, "Why didn't you show us this before."  No other presentation shows in as elegant a way the relationship between 1)  n, l and ml, 2) the ordering of orbitals in hydrogen-like atoms, and 3) the ordering of orbitals in the periodic table (along with the difficulty of assigning orbital filling in transition and f-block elements).  

Beauty is in every atom.  Let it loose.

Topics Covered: 
Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

A student will be able to relate the quantum numbers n, l and ml to each other.

A student will be able to correctly describe the number of subshells and number of orbitals in a shell.

A student will be able to describe the orbital energies in a hydrogen-like atom.

A student will be able to order subshells in a multi-electron system and relate this to the periodic table.

A student will realize the symmetry and beauty of quantum chemistry without ever seeing the shape of one orbtal.  

Implementation Notes: 

In the first two slides, often use the phrase "because it's a square."

This is useful for Inorganic Chemistry students as well because it will cement in their mind long lost rules of quantum numbers.

 

Evaluation
Evaluation Methods: 

1) Short answer quiz questions

2) Multiple choice questions on hour and final exams.

3) Awe.

Evaluation Results: 

1) From a quiz killer to a typical A, B, C student gets it right, the D student is still a bit confused and the F student still misses the idea.

2)  On a question asking, "how many orbitals in the n=3 shell", the results increased from the 40's to 80's %.  

3) As jaws dropped, quarters could be slipped into their mouths.  Faculty pulled out phones to take pictures of a white-board version before I told them I had a PowerPoint version.

26 Jul 2018

General Chemistry Collection for New Faculty

Submitted by Kari Stone, Benedictine University

VIPEr to the rescue!

The first year as a faculty member is extremely stressful and getting through each class day to day is a challenge. This collection was developed with new faculty teaching general chemistry in mind pulling together resources on the VIPEr site to refer back to as the semester drags along. There are some nice in-class activities, lab experiments, literature discussions, and problem sets for use in the general chemistry course. There are also some nice videos and graphics that could be used to spark interest in your students.

Subdiscipline: 
Prerequisites: 
Corequisites: 
Course Level: 
19 Jul 2018

Teaching Forum Posts for New Faculty

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

Not applicable.

Evaluation Results: 

Not applicable.

Description: 

This web resource is a diverse list of VIPEr forum topics about teaching that may be of interest to new faculty assigned to teach general chemistry for the first time. It was created as part of a larger collection to help new faculty get started in the classroom.

Prerequisites: 
Subdiscipline: 
Corequisites: 
Course Level: 
Learning Goals: 

There are no specific learning goals since this web resource is for faculty to become familiar with some of the topics that have been discussed in the teaching forum on VIPEr. 

Implementation Notes: 

Not applicable.

Time Required: 
If a faculty member reads through all the forum topics, this could take an hour.
17 Jul 2018

Stoichiometric Calculations: A General Chemistry Flipped Classroom Module

Submitted by Jack F Eichler, University of California, Riverside
Evaluation Methods: 

1) Performance on the pre-lecture online quiz

2) Performance on the in-class activity (clicker scores or hand-graded worksheet)

Evaluation Results: 

Students generally score on average 70% or higher on the pre-lecdure quiz, and on average 70% or more of students correctly answer the in-class clicker questions. As  noted in the worksheet answer key, question #4 generally gives students the most trouble as they may not yet have learned how to sum a series of reactions to yield an overall reaction. Instructors are encoruaged to do an example of this in the acitivty introduction. 

Description: 

This is a flipped classroom activity intended for use in a first semester general chemistry course. Students are expected to have prior knowledge in determining the molar mass of compounds, how to carry out mole/gram conversions, and how to write balanced chemical reactions. The activity includes: 1) pre-lecture learning videos that guide students through carrying out basic stoichiometric calculations, determining the limiting reactant, and determining the percent yield of a reaction; 2) a pre-lecture interactive tutorial that helps students learn the concept of limiting reactant; 3) pre-lecture quiz questions; and 4) an in-class activity that requires students to apply their knowledge of stoichiometry and limiting reactant in the real-world application of converting coal to liquid fuel.

 

Learning Goals: 

Students are expected to complete the following learning objectives:

a) using mole-gram conversions and mole-mole conversions to carry out stoichiometric calculations for balanced chemical reactions;

b) gaining appreciation for how stoichiometric calculations are used in real-world chemical reactions.

Prior to completing this activity, students will be expected to have learned how to use molar masses of elements and compounds to carry out mole-gram conversions, how to balance chemical reactions, and how to use balanced chemical reactions to carry out mole-mole conversions.

 

Equipment needs: 

Suggested technology:

1) online test/quiz function in course management system

2) in-class response system (clickers)

Corequisites: 
Subdiscipline: 
Topics Covered: 
Prerequisites: 
Course Level: 
Implementation Notes: 

Attached as separate file. 

Time Required: 
50-80 minutes

Pages

Subscribe to RSS - First year