First year

8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

8 Jun 2019

IUPAC Brief Guide to the Nomenclature of Inorganic Chemistry

Submitted by Robin Macaluso, University of Texas Arlington
Description: 

This is a short nomenclature guide designed to be used by students and faculty.

Subdiscipline: 
Topics Covered: 
Prerequisites: 
Corequisites: 
6 Jun 2019

VSEPR: Flash Review

Submitted by Christopher Durr, Amherst College
Description: 

This presentation is meant to be a review of applying VSEPRup to steric number 6. It's designed to be viewed as a powerpoint and printed out to keep for the student's notebook.

It can be used at multiple levels: as a review immediately after learning VSEPR in general chemistry, or as a refresher before starting upper level inorganic chemistry. The instructor could add text or voice over the slides to add more detail or leave the presentation as is for students.

If you'd like .psd or .pdf files of the drawings in these presentation, please contact me directly.

Prerequisites: 
Corequisites: 
Learning Goals: 

After reviewing this material students should be able to:

Draw the correct VSEPR predicted structure of a molecule based on steric number and lone pair count.

Name VSEPR structures with their appropriate geometry.

Avoid common VSEPR mistakes, particularly those with steric number 5 and 6.

Recognize how lone pairs distort bond angles from ideal geometry in molecules like ClF3

 

Implementation Notes: 

I plan on uploading this flash review (along with others) to my class site before students arrive to my upper level inorganic course. I will voice over the slides, explaining the concepts, so they're ready to apply molecular orbital theory on the first day of class.

Time Required: 
10 - 15 Minutes
Evaluation
Evaluation Methods: 

I will compare student preparedness between this class and a previous one that did not receive a review.

Evaluation Results: 

This will be updated in the future.

6 Jun 2019

Molecular Orbital Theory: Flash Review

Submitted by Christopher Durr, Amherst College
Description: 

This presentation is meant to be a review of constructing and utilizing an MO diagram, in this case O2. It's designed to be viewed as a powerpoint and printed out to keep for the student's notebook.

It can be used at multiple levels: as a review immediately after learning MO theory in general chemistry, or as a refresher before starting upper level inorganic chemistry. The instructure could add text or voice over the slides to add more detail or leave the presentation as is for students.

If you'd like .psd or .pdf files of the drawings in these presentation, please contact me directly.

 

 

Prerequisites: 
Corequisites: 
Learning Goals: 

After reviewing this material students should be able to:

Recall the shape, size and appropriate nodes of atomic orbitals.

Note the appropriate electron configuration of a given atom.

Draw molecular orbitals with the appropriate sign and node position.

Apply the Aufbau Principle to molecular orbitals to determine the ultimate spin state of a molecule.

Determine the bond order of a molecule from a completed MO diagram.

Manipulate the bond order of a molecule with Reduction/Oxidation.

 

Implementation Notes: 

I plan on uploading this flash review (along with others) to my class site before students arrive to my upper level inorganic course. I will voice over the slides, explaining the concepts, so they're ready to apply molecular orbital theory on the first day of class.

Time Required: 
10 - 15 Minutes
Evaluation
Evaluation Methods: 

I will compare student preparedness between this class and a previous one that did not receive a review.

Evaluation Results: 

This will be updated in the future.

2 Jun 2019

Maths for Chemists

Submitted by David Harding, Walailak University
Description: 

Chemistry requires mathematics in almost all areas but it is a subject many students struggle with. This short booklet introduces mathematics from basic concepts to more advanced topics. A particularly nice feature is that examples of chemistry calculations are included so that students can understand why they have learn mathematics at all. This resource comes from the Royal Society of Chemistry's Learn Chemistry website.

Prerequisites: 
Corequisites: 
Course Level: 
31 May 2019

Helping Students with Visual Impairments See Colors

Submitted by Douglas Balmer, Warwick High School
Evaluation Methods: 

Do these students identify the same colors as the students without visual impairments?

Are their lab results correct? 

Evaluation Results: 

Students were able to accurately describe colors.

Description: 

I have had some students in class have a hard time identifying colors (flame tests, solution color, acid-base indicators, etc.) because of a visual impairment. There are many cell-phone apps that are helpful in aiding these students. "Pixel Picker" allows the students to load a picture from a device (cell phone, ipad). This is helpful because students are now dealing with a "frozen" image. Moving the cross-hair to different parts of the picture changes the R-G-B values. The "Color Blind Pal" app uses a more qualitative approach. It names the color in the cross-hair using various color scales. There are also different options for different types of color blindness. 

Both of these apps are free and availble in the App Store.

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

A student should be able to correctly identify an unknown metal by the color of its flame.

A student should be able to correctly identify the endpoint in a titration by the indicator's color change.

A student should be able to correctly describe the physical properties (color) of a sample.

A student should be able to correctly predict the visible absorbance spectrum of a solution based on correctly identifying the color of the solution.

Implementation Notes: 

Have the students with visual impairments practice using the app ahead of time to better prepare them to use the app for the first time in class/lab. Students would also need to understand the additive nature of light colors. For example, high R and G values will appear yellow/orange. I would give these students a 1-page handout for their lab notebook with the addative color wheel and various colored circles labeled with their names and RGB values so that students could practice and reference in the lab.

Our lab safety contract actually has students indicate whether they are color blind. This is a good time to introduce these students to the apps.

Time Required: 
15 min
23 May 2019

Teaching Computational Chemistry

Submitted by Joanne Stewart, Hope College

This is a series of in-class exercises used to teach computational chemistry. The exercises have been updated and adapted, with permission, from the Shodor CCCE exercises (http://www.computationalscience.org/ccce). The directions provided in the student handouts use the WebMO interface for drawing structures and visualizing results. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

Prerequisites: 
Corequisites: 
22 May 2019

Digital Lab Techniques Manual

Submitted by Catherine McCusker, East Tennessee State University
Description: 

MIT OpenCourseWare has a great series of videos explaining (synthetic) lab techniques 

Course Level: 
Prerequisites: 
Corequisites: 
Implementation Notes: 

I have my research students watch these videos before starting to work in the lab.  Many of them have (or remember) very little hands-on lab experience before they start.

Time Required: 
Each video is around 10-15 minutes long
20 May 2019

CompChem 02: Introduction to WebMO

Submitted by Joanne Stewart, Hope College
Evaluation Methods: 

The students write their answers to the questions directly onto the handout. I collect the handout in the next class and check it for completeness (credit/no credit).

Evaluation Results: 

Because the students completed the exercise in class where they could ask questions, their work is typically complete and correct.

Description: 

This is the second in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce).

It was tested on WebMO Version 18 but should work with minimal modification on earlier versions. WebMO is a free web-based interface to computational chemistry packages (www.webmo.net).

The directions assume no prior knowledge of the WebMO interface and provide detailed, click-by-click instructions on building molecules and setting up calculations.

Learning Goals: 

After completing this exercise, students will be able to:

  1.  Draw a molecule in WebMO
  2.  Rotate, translate, and zoom the molecule
  3.  Choose a theory and basis set for calculations
  4.  Optimize the geometry of a molecule
  5.  Determine the bond lengths, bond angle, and dihedral angles in a molecule in WebMO
  6.  Calculate molecular orbitals in WebMO
  7.  Use the Z-matrix editor and coordinate scans to compare the energies of different molecular geometries
Equipment needs: 

Students need access to a computer, the internet, and WebMO (with Mopac). Other computational engines (Gaussian, GAMESS) can be used.

I initially taught this part of the course in a computer lab, but last year all of the students were able to bring their own laptops. I bring an extra laptop to class just in case.

Prerequisites: 
Corequisites: 
Topics Covered: 
Implementation Notes: 

I use this as an in-class exercise. The students are able to follow the directions with little difficulty. Many of them have used the WebMO interface briefly in general chemistry and organic chemistry, so this is not their first exposure.

The students need a reminder of what a dihedral angle is.

Time Required: 
50 minutes
20 May 2019

CompChem 01: Creating a Basis Set

Submitted by Joanne Stewart, Hope College
Evaluation Methods: 

I ask the students to bring printed copies of their graphs and answers to the questions in the student handout to the next class. I collect these and check them for completeness (credit/no credit). 

Evaluation Results: 

Because the students completed the exercise during the previous class, their work is typically complete and correct.

Description: 

This is the first in a series of exercises used to teach computational chemistry. It has been adapted, with permission, from a Shodor CCCE exercise (http://www.computationalscience.org/ccce).

In the exercise, students learn about simple Gaussian-type basis sets. In an Excel spreadsheet, they compare the Slater function for a 1s orbital to the combination of one, two, or three Gaussian functions. They are also introduced to the Basis Set Exchange website (https://bse.pnl.gov/bse/portal).

 

Learning Goals: 

After completing this exercise, students will be able to:

  1.  Explain why Gaussian-type orbitals (GTOs) are used instead of Slater-type orbitals (STOs) in computational chemistry.
  2.  Use Excel to model the hydrogen STO with GTOs.
  3.  Explain why combining multiple GTOs produces a better approximation of an STO.
  4.  Find alpha values for the STO-3G basis set in an online database.
Equipment needs: 

Students need access to a computer, the internet, and Excel. I initially taught this part of the course in a computer lab, but last year all of the students were able to bring their own laptops. I bring an extra laptop to class just in case.

Prerequisites: 
Corequisites: 
Topics Covered: 
Implementation Notes: 

All of the students had some experience with Excel in their general chemistry course. However, entering the complicated equations into Excel is challenging for many of them. I have found it most effective to simply allow them to help one another with this.

They are typically able to make the graphs without extra assistance, but I walk around the class and help as needed.

Time Required: 
30 minutes

Pages

Subscribe to RSS - First year