Towards "Personalized Solar Energy": An Inexpensive Oxygen-Evolving Catalyst

Submitted by Anne Bentley / Lewis & Clark College on Fri, 08/27/2010 - 15:54
Description

In the two years since this article was published, it has jump-started a large amount of research in the area of cobalt-based catalysts for solar water splitting.  The paper describes the electrochemical synthesis and oxygen-evolution capabilities of a Co-phosphate catalyst under very mild conditions.  The paper can stimulate discussion of many topics found in the inorganic curriculum, including electrochemistry, semiconductor chemistry, transition metal ion complex kinetic trends, and solid state and electrochemical characterization techniques.

Dye-Sensitized Solar Cell 2010

Submitted by Simon Garcia / Kenyon College on Tue, 08/03/2010 - 16:37
Description

In this laboratory experiment, students construct a solar cell from a combination of synthetic and natural materials. It touches on a variety of chemical principles (kinetics, photochemistry, electrochemistry, intermolecular forces, material properties); however, the primary aim is the experience of turning materials into components and then assembling them into a working device. This experiment is unique in that it emphasizes each material's function, and how its properties affect this function. Students can seal these solar cells and take them home afterward.

Teaching General Chemistry: A Materials Science Companion

Submitted by Maggie Geselbracht / Reed College on Mon, 07/26/2010 - 18:15
Description

This book was originally written (full disclosure: I am one of the co-authors) for college teachers as a resource text to encourage and support the incorporation of more solid state and materials chemistry into the general chemistry curriculum.  The Companion, as I refer to it, is filled with background material, demonstrations, laboratory experiments, and end-of-chapter problems that will aid the non-specialist in enriching their teaching with examples from the world of solid state materials.  Although intended for a general chemistry audience, several of the chapters present fairly sophis

12 Slides About African American Contributions to the Chemical Sciences

Submitted by Sibrina Collins / College of Arts and Sciences at Lawrence Technological University on Wed, 07/21/2010 - 23:53
Description

This presentation provides a brief overview of the contributions of five AfricanAmerican chemists, including two inorganic chemists. George Washington Carver is quite often themost celebrated African American chemist (soil chemist), but he is only one individual! There are many other African Americans that have made important and significant contributions to the chemical sciences. The profiles include inorganic chemists, namely, Professor Gregory H. Robinson, University of Georgia and Dr. Novella Bridges, Pacific Northwest National Laboratory (PNNL).

Element Jeopardy!

Submitted by Keith Walters / Northern Kentucky University on Thu, 07/15/2010 - 11:44
Description

Like many inorganic faculty (especially those faced with trying to teach "all" of inorganic chemistry in a one-term junior/senior course), I have found it increasingly difficult over the years to include any significant descriptive chemistry content in my course. Moreover, I have a constant interest in trying to convey some of the "story behind the story" in chemistry, which in this area centers on the discovery of the elements. I was mulling this over at an ACS meeting one time and happened to be in an inorganic teaching session where Josh van Houten (St.

Organometallics and Named Reactions

Submitted by Laurel Goj Habgood / Rollins College on Sun, 07/11/2010 - 18:38
Description
A list of named reactions involving transition metal-complexes is provided to the class and the students present a brief overview of each which includes the original paper and a current application.

Molecular Origami: Precision Scale Models from Paper, by Robert M. Hanson

Submitted by Randall Hicks / Wheaton College on Tue, 06/29/2010 - 11:54
Description

This book called to me given my fascination with both origami and molecular model kits. While not a textbook in the true sense, the content of the book is pertinent to topics of molecular structure and symmetry and is therefore potentially valuable in both general and inorganic chemistry courses. In addition to the plans for constructing all the models (~125), there is a small amount of background information. Granted, many of these models could more easily be made using traditional model kits, but I had fun building them from paper.