Element Jeopardy!

Submitted by Keith Walters / Northern Kentucky University on Thu, 07/15/2010 - 11:44
Description

Like many inorganic faculty (especially those faced with trying to teach "all" of inorganic chemistry in a one-term junior/senior course), I have found it increasingly difficult over the years to include any significant descriptive chemistry content in my course. Moreover, I have a constant interest in trying to convey some of the "story behind the story" in chemistry, which in this area centers on the discovery of the elements. I was mulling this over at an ACS meeting one time and happened to be in an inorganic teaching session where Josh van Houten (St.

Organometallics and Named Reactions

Submitted by Laurel Goj Habgood / Rollins College on Sun, 07/11/2010 - 18:38
Description
A list of named reactions involving transition metal-complexes is provided to the class and the students present a brief overview of each which includes the original paper and a current application.

Molecular Origami: Precision Scale Models from Paper, by Robert M. Hanson

Submitted by Randall Hicks / Wheaton College on Tue, 06/29/2010 - 11:54
Description

This book called to me given my fascination with both origami and molecular model kits. While not a textbook in the true sense, the content of the book is pertinent to topics of molecular structure and symmetry and is therefore potentially valuable in both general and inorganic chemistry courses. In addition to the plans for constructing all the models (~125), there is a small amount of background information. Granted, many of these models could more easily be made using traditional model kits, but I had fun building them from paper.

Descriptive Chemistry Wikipedia project

Submitted by Lori Watson / Earlham College on Mon, 06/21/2010 - 16:11
Description

Students select, research, and then post an article on an inorganic compound to Wikipedia. The compounds are chosen from a list of “stubs” (short articles that need to be expanded) found at http://en.wikipedia.org/wiki/Category:Inorganic_compound_stubs and might include such items as the synthesis, processes of isolation, structure, interesting facts about the compound in history, and/or an application of the compound.

The Berry Pseudorotation in PF5

Submitted by Maggie Geselbracht / Reed College on Sat, 03/20/2010 - 00:37
Description

This activity makes use of Jmol animations created by Prof. Marion Cass at Carleton College to illustrate the Berry Pseudorotation in trigonal bipyramidal molecules such as PF5.  Students explore the animations and answer a series of questions that lead to a description of this intramolecular motion that exchanges equatorial and axial atoms in trigonal bipyramidal molecules.  

Link to Jmol animations of Berry Pseudorotation

Exploring Molecular Orbitals With Spartan

Submitted by Maggie Geselbracht / Reed College on Thu, 01/21/2010 - 21:24
Description

Molecular models and selected molecular orbital surfaces and slices were calculated with Spartan for HF, LiH, CO2, XeF2, and BF3, and the results were used by students in an in-class activity (covering several class sessions) to answer a series of questions.

Metals in Biological Systems - Who? How? and Why?

Submitted by Betsy Jamieson / Smith College on Wed, 01/20/2010 - 10:01
Description

This learning object was developed collaboratively by members of the IONiC Leadership Council.  The overall goal is to provide a general overview of metals in biological systems and introduce students to several of the important ideas in the field of bioinorganic chemistry.  Topics include toxic metals, metals used in biological systems and the overlap of these categories; issues associated with the uptake, transport and storage of metal ions; and the benefits gained by using metals in biological molecules.  

Metals in Acid Base Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Sun, 10/18/2009 - 08:26
Description

This is a simple in class exercise to review acid- base equilibria and to lead the students to thinking about metals as both Lewis and Bronsted- Lowry acids. I use it as a discussion starter when I introduce the role of metals in biological acid/base chemistry in my upper division inorganic course, but it can be used at any level once acid-base equilibria has been covered.