Second year

5 May 2017

SOP4CV - A Web Resource for Cyclic Voltammetry Information

Submitted by Gerard Rowe, University of South Carolina Aiken
Description: 

http://sop4cv.com/

This is a great website created by Dr. Daniel Graham (who has the distinction of publishing a paper featured on TOC ROFL) to give anyone a working understanding of cyclic voltammetry techniques, their physical background, and the interpretation of their results.  

Prerequisites: 
Corequisites: 
Subdiscipline: 
Learning Goals: 

Students will gain experience interpreting the basic features of cyclic voltammograms, including: half-potential, electrochemical reversibility, chemical reversibility, and scan rate dependence

Students will learn the physical origins of the "duck" shape of a reversible CV using the Nernst equation and diffusion concepts

Students will learn what analytical methods are available using CV

Implementation Notes: 

None yet.  I'm considering creating an activity using the information in this website, but for now I just wanted to share this resource.

27 Mar 2017

Nanomaterials for Carbon Dioxide Reduction

Submitted by Anne Bentley, Lewis & Clark College
Evaluation Methods: 

The problems presented here represented half the points on the final exam – I have included point totals to give an idea of the weight assigned to each problem.

Evaluation Results: 

Twelve students were enrolled in my course in the fall 2016. The average overall score for these problems was 78%.

For problem 1b, I calculated the oxidation numbers using the familiar general chemistry method of assigning oxygen as –2 and hydrogen as +1. Students recently coming through organic may have some other way to do it, and you may need to provide directions for your students about your preferred method.  I think I could have worded part (c) better to try to emphasize the redox processes involved. I wanted them to think of combustion, but I think they needed to be specifically prompted, such as "Give an example of the combustion processes that generate CO2 and trace the oxidation state of carbon through the reaction." Overall my students scored 86% on problem 1.

The second problem (about another method that could be used to measure d-spacing) was fairly hit or miss.  Five students got full credit, six students got 3 points, and one got zero. Eleven out of twelve did answer part (a) correctly.  I realized as I made this LO that the article says the carbon-based material doesn’t diffract X-rays, but doesn’t actually directly explain whether or not the Cu nanoparticles diffracted X-rays, so you may need to adjust the question to be technically accurate.

Question three (re: surfactants in nanoparticle synthesis) referred back to knowledge from earlier in the course. The overall score was 61%.

Question 4 (define and describe electrodes) was fairly straightforward, and students scored 85%.

Question 5 caused some confusion, as some students missed that I was looking for “carbon-containing” products only. I didn’t count off for that mistake, but it made the problem harder for students who included hydrogen in each box.  Overall, students did very well on this problem (89% correct).

Question 6 – again, not too much trouble here (84% correct).

Question 7 – I was surprised that students didn’t do better on this question, as I thought that water reduction was mentioned often in the article.  Only three (of 12) students scored 5 points on this problem, and the average score was 53%.  This was probably my favorite question, as it foreshadows electrochemistry topics I cover in my inorganic course.

Description: 

This literature discussion is based on an article describing the use of copper nanoparticles on an N-doped textured graphene material to carry out the highly selective reduction of CO2 to ethanol (Yang Song et al., “High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle / N-Doped Graphene Electrode” ChemistrySelect 2016, 1, 6055-6061.  DOI: 10.1002/slct.201601169). The article provides a good introduction to the concepts of electrochemical reduction, selectivity and recycling of fossil fuels. The literature discussion assignment shared here was used as half of the final exam in a half-credit nanomaterials chemistry course, but could be adapted for use as a take-home or in-class assignment.

Corequisites: 
Course Level: 
Learning Goals: 

After reading this paper and working through the problems, a student will be able to:

  • assign oxidation states to carbon and trace the oxidation and reduction of carbon through fossil fuel combustion and CO2 conversion
  • describe the role of control experiments in studying the CO2 conversion presented in the article
  • define the word “selective” in the context of this research
  • use the proposed mechanism to explain why the electrode studied produces ethanol in such a high proportion
  • identify the primary reaction competing with CO2 reduction for available electrons
Implementation Notes: 

These questions comprised half of the final exam for my half-credit nanomaterials chemistry course in the fall of 2016.  I gave the article to the students one week ahead of time. They were encouraged to read the article, make any small notes they liked, and meet with me in office hours with questions. At the final exam they were allowed to use their copy of the article, but they were also required to hand in their copy with their exam so that I could make sure they hadn't written lots of extraneous information on the exam copy.

The nanomaterials course features near-weekly homework assignments centered around articles from the literature. Because I used this article at the end of the course, students were already familiar with nanomaterials synthesis and characterization techniques. Thus, some of the questions I asked relied on previous knowledge. 

Please feel free to adapt these questions and add some of your own. Leave comments describing any new questions you’ve added.

Time Required: 
one hour
3 Mar 2017

In-class peer review

Submitted by S. Chantal E. Stieber, Cal Poly Pomona
Evaluation Methods: 

Student participation was evaluated during the in-class portion based on the questions students asked. 

The formal peer review homework was evaluated based on completion, level of thought and thoroughness.

Evaluation Results: 

Overall, students were very interested in this topic and had not formally learned about the process before. There was a very lively discussion and a lot of questions were asked. All students received full credit for participation. 

Similarly, once students received their classmate's paper for peer review, they took the process very seriously and carefully went through the paper and answered the worksheet questions. 

I was very impressed by the high quality of the formal peer reviews that were turned in as homework. Students clearly spent a lot of time to carefully think about the paper and craft a reasonable response. Most students received full-credit. 

Description: 

This activity includes questions for students to answer to help guide them through the process of peer review. It was designed to assist students in writing peer reviews for research reports written by their classmates, but could be applied to literature articles as well.

Corequisites: 
Prerequisites: 
Learning Goals: 

A student will be able to:

-Explain how the peer-review process works

-Critically read through a research article

-Carefully review a research article

-Write a professional peer review

Implementation Notes: 

An overview of peer review was given with three powerpoint slides. Students then worked through a modified Q&A of the peer review module "Peer Review - How does it work?" posted by Michael Norris on VIPEr. This provided students with an example of real reviews, along with the resulting article revisions. 

The current worksheet was then passed out to students along with a research report written by one of their classmates (I assigned these and removed names). In class, students answered the questions on the worksheet and were able to ask questions of the editor (the instructor in this case). Following the in-class peer review, students had to write a formal peer review, which was turned in as homework. 

The peer review was a final component of a research report that students had been working on throughout the course. The final report was turned in after students had received the review comments back from their peers. The grade of the final report took into consideration whether or not students had made modifications based on comments by their peer reviewer.

 
Time Required: 
60 min
2 Mar 2017

Experimenting with Danger- CSB safety Video

Submitted by Sheila Smith, University of Michigan- Dearborn
Description: 

This 2011 video by the Chemical Safety Board is a very serious and moving motivation for adopting safe practices in the chemical laboratory.  It focuses on two recent and very real safety issues in University labs (UCLA, 2008 and TTU, 2010 ), both of which have shaken the educational research community to result in positive change. 

I have shared a "SafeShare" link so that you will not have to listen to ads, and if you choose to play the link in your classroom, you will not see all the Youtube ads on the screen.  

Prerequisites: 
Corequisites: 
Learning Goals: 

Students will gain a real sense of the importance of chemical safety in the laboratory that is related to real people who have suffered real losses.  

Implementation Notes: 

I will be using this video as part of my standard safety training during intake of new undergraduate researchers in my research lab and in the first week of Advanced lab.

I will also be working to get our general chemistry coordinator to adopt some or all of it as part of the lab safety training for freshmen.

Time Required: 
24 minutes
27 Jan 2017

Iron Catalysts for Lactide Polymerization

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

This LO will be used to facilitate an in-class discussion of polymers and polymerization catalysts (in general) within the context of the article. Student responses will not be graded, but this LO will be evaluated by the quality of the discussion and how well it guides the students to the main points of the article.

Evaluation Results: 

This LO has not been used yet, but will be used in the Fall 2017 semester. Evaluation results will be posted after it has been used in class.

Description: 

This set of questions is intended to guide students through an excellent article by Jeff Byers and co-workers that describes the use of bis(imino)pyridine iron bis(alkoxide) complexes as catalysts for the polymerization of lactide. This set of questions is appropriate for a second-semester sophomore/first-semester junior level course in inorganic chemistry. The research described in the article ties together concepts of organometallic synthesis and characterization, catalysis, mechanistic studies, and polymer chemistry.

Given the recently revised ACS certification guidelines, this LO might be useful to faculty looking to incorporate polymer chemistry concepts into the inorganic curriculum.

 

Corequisites: 
Learning Goals: 

After completing this exercise, students should be able to:

  • Define basic terms used to describe polymerization reactions;

  • Differentiate between living polymerizations and other types of polymerization reactions;

  • Describe why the polymerization of lactic acid is important;

  • Explain how the bis(imino)pyridyl iron complex catalyzes the polymerization reaction;

  • Contrast characteristics of NMR spectra for paramagnetic complexes to those of typical diamagnetic complexes;

  • Explain how the evidence presented in the article supports the suggested mechanism;

  • Describe how the oxidation state of the iron center is critical for catalytic activity.

Implementation Notes: 

This set of questions is intended to help students extract important and useful material from this excellent article. About a week before class, students will be provided with the article and this set of questions so that they have sufficient time to read the article and answer the questions. When the students arrive in class on the designated day, the instructor should lead the discussion of the paper and have the students share and discuss their answers to ensure that each answer is correct and complete.

Time Required: 
1 hour or more
18 Jan 2017

calistry calculators

Submitted by Adam R. Johnson, Harvey Mudd College
Description: 

I just stumbled on this site while refreshing myself on the use of Slater's rules for calculating Zeff for electrons. There are a variety of calculators on there including some for visualizing lattice planes and diffraction, equilibrium, pH and pKa, equation balancing, Born-Landé, radioactive decay, wavelengths, electronegativities, Curie Law, solution preparation crystal field stabilization energy, and more.

I checked and it calculated Zeff correctly but I can't vouch for the accuracy of any of the other calculators. 

Prerequisites: 
Corequisites: 
Learning Goals: 

This is not a good teaching website but would be good for double checking math

 

Implementation Notes: 

I used this to double check my Slater's rules calculations (and found a mistake in my answer key!)

28 Dec 2016

Understanding the Mechanism of Grubbs-Catalyzed Olefin Metathesis

Submitted by Richard Lord, Grand Valley State University
Description: 

A literature discussion has been developed for two courses: (i) a more basic set of questions appropriate for a sophomore level course or, possibly, a one semester upper level course that does not spend much time on organometallics, and (ii) an in-depth, in- and out-of-class set of assignments appropriate for an organometallics unit or course. Both sets of questions explore the mechanism of olefin metathesis in first- and second-generation Grubbs catalysts using a variety of spectroscopic kinetic techniques that were presented in the paper Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543-6554 (doi: 10.1021/ja010624k).

Corequisites: 
Prerequisites: 
Subdiscipline: 
Learning Goals: 

A student should be able to do the following after completing this LO:

Identify and discuss the importance of an olefin metathesis reaction.

Distinguish between Fischer- and Schrock-type carbenes and count electrons in complexes featuring these ligands.

Predict Ia vs. Id mechanisms based on electron counting.

Discuss why 31P and 1H NMR, and UV-Vis, were appropriate spectroscopic techniques for measuring kinetics in these systems.

Explain how variations in the catalyst (halide, carbene substituent, phosphine substituent, phosphine vs. NHC, etc.) affect ligand exchange.

Describe why the second-generation catalysts outperform the first-generation catalysts based on olefin binding vs. phosphine loss (in contrast to the historical reasons for their design), and why trans- effect arguments do not apply to the Grubbs system.

 

 

Implementation Notes: 

Two of us ran portions of these (they were not complete) in Fall 2016. Both of us noted that students were confused by the NHC representation in the manuscript because the authors assume that the reader knows there is no H on the carbene carbon, yet one would predict a H there based on the line structure formalism.

It is important to point out to students that the work here represents only the first 1-2 steps of the overall mechanism of olefin metathesis. There is a question in both the basic and advanced exercises that has students analyze the metallacyclobutane intermediate, but this species is formed later in the mechanism than any of the work presented here.

Time Required: 
~1 class period
23 Oct 2016
Description: 

See the attachement. 

Topics Covered: 
Prerequisites: 
Corequisites: 
16 Sep 2016

Safety is job one

Submitted by Alice Lenthe, Villanova University
Description: 

This five slides about came to be from a discussion that happened after Marta Guron and Jared Paul gave a talk at the Philly ACS in Fall 2016. This is a modified version of a presentation given to all chemistry students regarding the proper handling and disposal of chemicals. Certain details will need to be modified to fit your individual institutions. The particular focus of the slides is for students to learn to turn to SDS sheets before using chemicals and to be able to read the labels on chemicals and understand the associated safety concerns.

Prerequisites: 
Corequisites: 
Learning Goals: 

After completing this training students should be able to 

1) Know how to access an SDS at your institution.

2) Know how to read an SDS in order to know the proper safety protocols for handling a given chemical.

3) Know how to properly dispose of chemicals at your institition.

 

Implementation Notes: 

The answers to the quiz were taken from an SDS found on the Aldrich website. Links are provided below.

 

At the time of this posting I am the director of environmental health and safety at Villanova University. I am not a regular VIPEr user, but was encourage to post these materials and did so with help from Chip Nataro. Hopefully the community finds a use the materials I have developed at Villanova.

8 Jul 2016

Developing a rubric for a learning object

Submitted by Joanne Stewart, Hope College
Description: 

A rubric articulates the expectations for an assignment and enables faculty to assess student work in a rapid and consistent manner.

This Five-Slides About was developed for the TUES 2016 workshop Organometallica at University of Michigan. It was presented in conjunction with Chip Nataro's modeling of the development of a literature discussion learning object (Ligand effects in titration calorimetry from the Angelici lab).

The PowerPoint contains examples of different types of rubrics, describes a resource with many examples of rubrics, and introduces the development of a rubric for the Angelici literature discussion learning object.

 

Corequisites: 
Prerequisites: 
Learning Goals: 

Faculty will be able to describe what a rubric is and be able to write one for a student assignment.

Implementation Notes: 

At the 2016 workshop, participants worked in small groups to develop the rubric for the Angelici learning object. 

Time Required: 
The presentation takes about 15 minutes. Asking participants to actively construct a rubric takes longer.
Evaluation
Evaluation Methods: 

Faculty were asked to write descriptions of "excellent," "acceptable," and "needs work" responses for two of the questions in the Angelici learning object.

Evaluation Results: 

The participant-sourced rubric will be published with the Angelici LO. During the rubric writing exercise, faculty learned that writing a rubric is different than writing an answer key. Some participants wrote their rubric and then realized that they wouldn’t be able to share it with students because it contained the answer. They went back and changed the language so that it described the EXPECTATIONS for what a good answer would contain and not the answer itself.

Pages

Subscribe to RSS - Second year