ColourLex - a colorful website!

Submitted by Vanessa / Albion College on Tue, 03/15/2016 - 13:49
Description

ColourLex (colourlex.com) is an amazing website that mixes chemistry and art. The creators of this website have extensively catalogued paintings and the pigments that were used to create them. The pigments range from artificial to natural and organic to inorganic. You can search for the specific combination that you want to see.

Point Group Battles Activity

Submitted by Darren Achey / Kutztown University on Thu, 10/15/2015 - 11:48
Description

In this activity, a pair of students are show an object or molecule and are asked to determine the point group before their competitor.

Peer Review - How does it work?: A literature discussion with a focus on scientific communication

Submitted by Mike Norris / University of Richmond on Thu, 07/02/2015 - 20:21
Description

This learning object is based on discussion of the literature, but it follows a paper through the peer review process.  Students first read the original submitted draft of a paper to ChemComm that looks at photochemical reduction of methyl viologen using CdSe quantum dots.  There are several important themes relating to solar energy storage and the techniques discussed, UV/vis, SEM, TEM, electrochemistry, and catalysis, can be used for students in inorganic chemistry.

Chemistry Infographics from Compound Interest

Submitted by Darren Achey / Kutztown University on Tue, 06/30/2015 - 14:48
Description

Compound Interest is a website that creates infographics for chemistry related events and items.  Specific examples of inorganic chemistry infographics include showing how the metal content in colored glass gives the glass its characteristic color, how the lighting of a match works with the conversion of red phosphorus to white phosphorus, and the various colors that transition metals can have in different oxidation states in water, among many other examples.

The Messy Chemist: Separating a Solid Mixture

Submitted by Mike Norris / University of Richmond on Tue, 06/30/2015 - 14:42
Description

This lab exercise gives students a problem scenario (a mixture of 4 solids) and asks them to determine a way to separate them from each other utilizing experimentation, previous knowledge, and discussion.  Students are expected to write a standard operating procedure detailing the method they determine for the separation at the end of the lab.  A modified version of this lab was originally performed in an accelerated summer class on chemistry given to 7th, 8th, and 9th graders that were on a track for early entrance into college.  The lab was done over the c

Web Resources from the 2013 Inorganic Curriculum Survey

Submitted by Barbara Reisner / James Madison University on Wed, 06/10/2015 - 10:49

 

In the 2013 Inorganic Curriculum Survey, respondents were asked about the resources they used when they teach inorganic chemistry. About 20% of respondents selected "other" and provided information about these resources. A number of people mentioned specific websites. This collection consists of the websites submitted in the survey.

Gumdrop models of the 7 crystal systems and the 14 Bravais Lattices

Submitted by Joy Heising / Massachusetts College of Pharmacy and Health Sciences (MCPHS University) on Mon, 05/18/2015 - 19:01
Description

Groups of 3-4 students follow this handout to create models of the 7 crystal systems and the 14 Bravais lattices using DOTS gumdrops, bamboo skewers and wood toothpicks. 

 

In-Class Review Questions for Metal Carbonyl Complexes

Submitted by Chris Goldsmith / Auburn University on Wed, 02/11/2015 - 11:24
Description

The slides provide review questions for a senior-level treatment of the spectroscopy and reactivity of metal carbonyl complexes. These are intended to be dispersed through one to three class periods.

The first slide is a review of electron counting and the 18-electron rule.

The second slide quizzes the students on the relationship between the electron-density of the metal center and the strength of the C-O bonds in the carbonyl ligands. It is intended to be given after a discussion of how IR can be used to assess the strength of M-C and C-O bonds in the compounds.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

Ligand Lineup

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Fri, 08/22/2014 - 11:40
Description

This is a kinesthetic activity in which students must utilize knowledge of the σ-donating, π-donating and π-accepting ability of ligands in order to rank the ligands in the spectrochemical series.  Students are each assigned a ligand on a card.  Suggested ligands are I-, Br-, Cl-, F-, ONO-, NO2- OH-, H2O, pyridine, NH3, ethylenediamine, bipyridine, phenanthroline, PPh3, CN- and CO.  Each student must evaluate the π-accepting, π-donating and σ-donating ability o