Quantum Dot Growth Mechanisms

Submitted by Chi / United States Military Academy on Sat, 06/03/2017 - 11:01
Description

This literature article covers a range of topics introduced in a sophomore level course (confinement/particle-in-a-box, spectroscopy, kinetics, mechanism) and would serve as a an end-of-course integrated activity, or as a review activity in an upper level course.

Inorganic Chemistry for Geochemistry and Environmental Sciences Fundamentals and Applications by George W. Luther III

Submitted by Rachel Narehood Austin / Barnard College, Columbia University on Wed, 01/04/2017 - 16:10
Description

This is a great new textbook by George Luther III from the University of Delaware.  The textbook represents the results of a course he has taught for graduate students in chemical oceanography, geochemistry and related disciplines.  It is clear that the point of the book is to provide students with the core material from inorganic chemistry that they will  need to explain inorganic processes in the environment.

Basics of Lanthanide-Based Photophysics

Submitted by Jacob Lutter / University of Southern Indiana on Thu, 06/30/2016 - 14:27
Description

This 5 slides about outlines the basics of lanthanide photophysics as a primer for those new to the topic.  These properties are very unique and actually very useful, which is a topic for another time.  The intricacies of what causes the Ln luminescence, its strengths and drawbacks are discussed along with how these drawbacks are addressed in molecular complexes.  Notes for the instructor are included that explain each slide.

Crystal Field Theory and Gems--Guided Inquiry

Submitted by Adam Johnson / Harvey Mudd College on Sat, 05/14/2016 - 21:42
Description

The colors of transition metal compounds are highly variable. Aqueous solutions of nickel are green, of copper are blue, and of vanadium can range from yellow to blue to green to violet. What is the origin of these colors? A simple geometrical model known as crystal field theory can be used to differentiate the 5 d orbitals in energy. When an electron in a low-lying orbital interacts with visible light, the electron can be promoted to a higher-lying orbital with the absorption of a photon. Our brains perceive this as color.

ColourLex - a colorful website!

Submitted by Vanessa / Albion College on Tue, 03/15/2016 - 13:49
Description

ColourLex (colourlex.com) is an amazing website that mixes chemistry and art. The creators of this website have extensively catalogued paintings and the pigments that were used to create them. The pigments range from artificial to natural and organic to inorganic. You can search for the specific combination that you want to see.

A Demonstration to Segue Between d to d and CT Transitions

Submitted by Marion Cass / Carleton College on Mon, 08/10/2015 - 19:21
Description

The following is a simple in-class “demonstration” that I use to segue between d to d and charge transfer transitions.  After teaching about d to d transitions and Tanabe-Sugano Diagrams, I show my students three solutions that I have put in large test tubes before class. The three solutions I place in the test tubes are:

a.  10 ml of 0.1M Co(H2O)62+

b.  10 ml of 0.1M Cu(H2O)62+

c.  10 ml of a freshly prepared 0.1 M KMnO4 solution

Peer Review - How does it work?: A literature discussion with a focus on scientific communication

Submitted by Mike Norris / University of Richmond on Thu, 07/02/2015 - 20:21
Description

This learning object is based on discussion of the literature, but it follows a paper through the peer review process.  Students first read the original submitted draft of a paper to ChemComm that looks at photochemical reduction of methyl viologen using CdSe quantum dots.  There are several important themes relating to solar energy storage and the techniques discussed, UV/vis, SEM, TEM, electrochemistry, and catalysis, can be used for students in inorganic chemistry.

Teaching and Learning Package Library from University of Cambridge

Submitted by Vanessa / Albion College on Mon, 06/29/2015 - 15:56
Description

This is a resource that has short, animated tutorials on a variety of different topics. Most of the topics are materials science and/or engineering topics but there are several that would be of interest to chemistry students. (A full list of topics is given below.)