Extended structure

8 Jan 2020
Evaluation Methods: 

I usually grade one student handout per pair and typically have 1 pt per answer on the worksheet, but take the total out of 60 pts (which ends up giving them a couple of free points).  

Evaluation Results: 

Last semester my 17 students had an average of 47 out of 60 on the lab--a bit lower than usual for that lab. The high was a 57 and the low was a 39. There were lots of different individual errors, but errors in identifying which of the first structures were closest packed and errors in % of holes occupied were common. 


This first-year laboratory is designed to give students an introduction to basic solid-state structures using both CrystalMaker files and physical models. I think this would work in a foundations level inorganic course as well. It could be used alternatively as an in-class activity or take-home problem set depending on the instructor. It was adapted by me and later, David Harvey, from an original activity that was posted as an educational resource on the CrystalMaker website in the mid 2000s.  

Learning Goals: 

Students will be able to

  • articulate how the atoms in a simple cubic, face-centered cubic, and body-centered cubic unit cell are arranged
  • determine the coordination number of particular atoms in a unit cell
  • count the atoms or ions in a unit cell and determine the empirical formula based on that
  • determine the length of a side of a unit cell based on the radius of an atom
  • visualize the holes in different kinds of unit cells and see how ionic solids can be built by putting ions in those holes
  • describe the forces holding different solids together
  • calculate the % of filled and empty space in lattices
  • identify closest packed structures
Equipment needs: 
  • Computer lab (approximately two students per computer) with CrystalMaker installed (it can be the student version if necessary)


  • Box of pennies
  • Mineral samples of calcite, fluorite, and NaCl (if you want to do the bonus)
Implementation Notes: 

I usually take one day of class to introduce students to CrystalMaker and all of the basic definitions and ideas of this lab before they start working on the stations. Typically I will work through the first station and then part of NaCl to show them some of the main ideas they will be using, asking them to provide answers (which are typically wrong on the first try!). I am typically circulating around answering questions as the students work through the lab. For a lab section of 24 working in 12 pairs, having one set of physical models seems adequate, but particularly at the beginning of the lab it might be helpful to have two sets of the face-centered cubic and body-centered cubic structures. The 12 computer "stations" are arranged in folders inside a Solid State Lab folder on the desktop of the lab computers, so students can just click on the correct folder and correct files as they work their way through the lab.

Time Required: 
3h lab period
9 Oct 2019

2019 Nobel Prize - Li-ion battery LOs

Submitted by Barbara Reisner, James Madison University

Congratulations to the 2019 recipients of the Nobel Prize - John B. Goodenough, M. Stan Whittingham and Akira Yoshino. It's a well deserved honor!

There are several LOs on VIPEr that talk about lithium ion batteries and related systems. The 2019 Nobel is a great opportunity to include something about these batteries in your class.

I hope to see more LOs in the coming weeks so we can bring this chemistry into our classrooms!

27 Jun 2019

Porphyrin-Based Metal-Organic Frameworks

Submitted by Amanda Bowman, Colorado College
Evaluation Methods: 

Students completed this activity in small groups, then turned in individual worksheets. Student learning and performance were assessed through 1) in-class group discussion after they had worked on the activity in small groups, and 2) grading the individual worksheets. Participation was most important in the small-group portion.

Evaluation Results: 

In general, students really enjoyed this exercise and felt that it was helpful for visualizing metal-organic frameworks (particularly the extended 3D structure). They also generally felt that it was helpful in visualizing the bonding sites of metal vertices, particularly for thinking about how that influences potential reactivity. We used Mercury as a visualization software for this discussion, and the majority of students felt very comfortable using Mercury and looking at cifs on their own after this activity.


The biggest challenge for students seemed to be in relating the 3D structure in the cif to the images and chemicals formulas in the article. They also tended to need some hints about question 5 – to think about what information Mössbauer can provide about oxidation state of the metal, or that you can tell whether or not there are two distinct iron environments. In our class, we do brief units on X-ray crystallography including how to use and interpret cifs, and Mössbauer spectroscopy before this literature discussion. If those topics are not already addressed in a particular class it might be helpful to add them in or directly address those topics for the students as an introduction to the literature discussion.


This literature discussion explores the physical structures, electronic structures, and spectroscopic characterization of several porphyrin-based metal-organic frameworks through discussion of “Iron and Porphyrin Metal−Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity,” Fateeva et al. Cryst. Growth Des. 2015, 15, 1819-1826, http://dx.doi.org/doi:10.1021/cg501855k. The activity gives students experience visualizing and interpreting MOF structures, and gives students exposure to some of the methods used to characterize MOFs.

Course Level: 
Learning Goals: 

Students will be able to:

  • Interpret and describe the bonding and structural characteristics of MOFs
  • Apply knowledge of ligand field strength to electronic structure of MOFs
  • Analyze X-ray crystallographic data to gain information about structural characteristics of MOFs
  • Interpret Mössbauer spectra to gain information about electronic structure of MOFs
Implementation Notes: 

This literature discussion was designed for use in an advanced (upper-level) inorganic chemistry course, but could be used in a foundational inorganic course if students have already been introduced to d-splitting diagrams and are given some coverage of Mössbauer spectroscopy and X-ray crystallography. When covering MOFs in class, students frequently expressed that visualizing and understanding the bonding sites and extended 3D structures was very challenging. So, this literature discussion was developed specifically to address that. Students completed this activity in small groups. It is very helpful to advise students ahead of time to bring laptops (or instructor should have some available) and to have the cifs from the paper downloaded and ready to go. We used Mercury as a visualization software for this activity. This activity can easily be completed in one class period. It is also helpful if students have been provided with the article ahead of time and encouraged to look it over – otherwise the most time-consuming part of this activity was allowing time for students to examine the MOF structure images in the paper before being able to discuss and answer the questions with their groups.

Note on visualization of MOFs using Mercury: To answer the discussion questions, we used the ‘stick’ or the ‘ball and stick’ style. We also used the default packing scheme (0.4x0.4x0.4) and the 1x1x1 packing scheme. The packing scheme can be changed by selecting Packing/Slicing… in the Calculate menu. I also had students view the 3x3x3 packing scheme – while this is not necessary to answer the discussion questions, it was interesting for students to be able to visualize the extended structure of the MOFs.


8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

12 Dec 2018

Foundations Inorganic Chemistry for New Faculty

Submitted by Chip Nataro, Lafayette College

What is a foundations inorganic course? Here is a great description



Course Level: 


Subscribe to RSS - Extended structure