Metal and Ionic Lattices Guided Inquiry Worksheet

Submitted by Adam Johnson / Harvey Mudd College on Mon, 05/16/2016 - 14:00
Description

This is a short worksheet that guides students through simple metal lattices (SCP, CCP, HCP) and how filling holes in these lattices results in ionic lattices (NaCl, CsCl, fluorite, etc.).

The worksheet was used as an in-class activity after students had read about the material in the text. This activity is probably suitable for first-year students, though I used it with juniors/seniors.

Nanomaterials Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/23/2016 - 15:49

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.

Annotated List of Metal-Containing Structures in the Cambridge Structural Database Teaching Subset

Submitted by Anthony L. Fernandez / Merrimack College on Sat, 08/15/2015 - 00:46
Description

The Cambridge Crystallographic Data Centre (CCDC) provides many free programs that can be used to view and manipulate crystal structures. Additionally, they have made a subset of the Cambridge Structural Database (CSD) available for teaching purposes and many educational activities have been created to go along with this teaching subset (see link below). This teaching subset can be freely viewed through the WebCSD interface or can be used in the freely-available Mercury program. (Mercury is avaliable for Mac, Windows, and Linux systems.)

Introduction to Miller Indices

Submitted by Vanessa / Albion College on Mon, 06/29/2015 - 14:22
Description

Towards the end of the semester, when we were starting to read more of the primary literature, I realized that the Miller Indices were present in most of the papers that I wanted to discuss. However, I couldn't find any good resources in textbooks that would help to explain what these were. I found this online resource through the University of Cambridge that is engaging, interactive and concise.

Materials Project

Submitted by Barbara Reisner / James Madison University on Fri, 06/12/2015 - 16:58
Description

The Materials Project is part of the Materials Genome Initiative that uses high-througput computing to uncover the properties of inorganic materials.

It's possible to search for materials and their properties

It employs high-throughput computation approaches and IT to create a system that can be used to predict properties and construct phase diagrams andPourbaix diagrams.

Web Resources from the 2013 Inorganic Curriculum Survey

Submitted by Barbara Reisner / James Madison University on Wed, 06/10/2015 - 10:49

 

In the 2013 Inorganic Curriculum Survey, respondents were asked about the resources they used when they teach inorganic chemistry. About 20% of respondents selected "other" and provided information about these resources. A number of people mentioned specific websites. This collection consists of the websites submitted in the survey.

Inorganic Chemistry Wikibook

Submitted by Tom Mallouk / Pennsylvania State University on Wed, 05/27/2015 - 09:49
Description

Frustrated by the lack of inorganic textbooks that really fit my materials-oriented first-semester inorganic course, I embarked on a project with my students to create a free online textbook. The students did most of the heavy lifting, and I'm pleased to report that the next class to use the book rather liked it. It is still a work in progress, but I would like to encourage everyone to check it out and edit it if the spirit moves you.

Gumdrop models of the 7 crystal systems and the 14 Bravais Lattices

Submitted by Joy Heising / Massachusetts College of Pharmacy and Health Sciences (MCPHS University) on Mon, 05/18/2015 - 19:01
Description

Groups of 3-4 students follow this handout to create models of the 7 crystal systems and the 14 Bravais lattices using DOTS gumdrops, bamboo skewers and wood toothpicks.