VIPEr Fellows 2022 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sun, 06/26/2022 - 14:31

The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Substitution Chemistry in Odd-Electron Iron Group Carbonyl Complexes (D'Acchioli)

Submitted by Nancy Williams / Scripps College, Pitzer College, Claremont McKenna College on Sun, 05/29/2022 - 05:54
Description

This LO brings together organometallic chemistry, electrochemistry, and computational chemistry in a complete whole, and shows how these different expertises and techniques all can add to our understanding of a rich chemical system. It might be of particular interest in a class dominated by even-electron and diamagnetic chemistry to give students an understanding of how practitioners approach odd-electron, paramagnetic systems. 

Discussion of "Dirhodium(II/II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light" (Turro)

Submitted by Jason D'Acchioli / University of Wisconsin-Stevens Point on Sat, 05/21/2022 - 12:13
Description

This Learning Object is dedicated to Prof. Claudia Turro as part of the VIPEr LGBTQIAN+ LO collection created in celebration of Pride Month (Jun) 2022. Prof. Turro was featured in the April 2022 special virtual issue Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists (https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00729). Claudia holds a special place in my heart. I came out later in life, and she was incredibly supportive as I wrestled with my identity as a gay man.

Inorganic Chemistry

Submitted by Martin McPhail / University of West Georgia on Thu, 05/19/2022 - 15:19
Description

The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.

Guess What: An Inorganic Chemistry Board Game

Submitted by Brad Wile / Ohio Northern University on Mon, 04/25/2022 - 17:46
Description

"Guess Who?" is a two player board game in which the object is to guess the identity of a character by asking questions about their appearance or features. This activity uses a similar game mechanic to identify concepts, models, and historical figures from inorganic chemistry. 

Catalytic Transformation of Lignin (Abu Omar)

Submitted by Hilary Eppley / DePauw University on Tue, 03/15/2022 - 10:20
Description

Lignin material from plants may be transformed into useful organic materials.  This LO is part of a special VIPEr collection honoring the 2022 ACS National Award recipients in the field of inorganic chemistry. Mahdi Abu Omar was the recipient of the ACS Award in Green Chemistry for his contributions to fundamental science and technology development for catalytic lignin conversion to renewable chemicals, fuels, and materials following green chemistry and engineering principles. 

Spectroscopic, Structural, and Computational Analysis of [Re(CO)3(dippM)Br]n+ (Nataro)

Submitted by Shirley Lin / United States Naval Academy on Sat, 03/12/2022 - 06:17
Description

This literature discussion will guide students through an article that applies spectroscopic, structural, and computational analyses to a family of compounds of the type [Re(CO)3(dippM)Br]n+  (dippM = 1,1’-bis(diisopropyl)phosphino metallocene, M = Fe, n= 0 or 1; M = Co, n = 1).

Toward the Design of Phosphorescent Emitters of Cyclometalated Earth-Abundant Nickel(II) and Their Supramolecular Study (Yam)

Submitted by Kyle Grice / DePaul University on Tue, 03/08/2022 - 15:15
Description

This LO was created to celebrate Dr. Vivian W.-W. Yam's 2022 ACS Award, the Josef Michl Award in Photochemistry. These questions are written to help guide class discussion about this paper and the complexes in it. This LO would be good for an organometallics class or similar upper-division inorganic chemistry class. 

Evidence of a homogeneous trinuclear Rh(I)-Cu(II)-Rh(I) catalyst for benzene C-H oxidative addition and styrene production (Gunnoe)

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 03/02/2022 - 10:26
Description

The literature discussion is based on a manuscript by Gunnoe and coworkers (ACS Catal. 2021, 11, 5688-5702. DOI: 10.1021/acscatal.1c01203). The paper presents mechanistic studies of catalytic oxidative conversion of arenes and olefins to alkenyl arenes with a focus on styrene production.