Inorganic Chemistry I

Submitted by Chip Nataro / Lafayette College on Mon, 01/15/2018 - 11:32
Description

Introduces the theories of atomic structure and bonding in main-group and solid-state compounds. Common techniques for characterizing inorganic compounds such as NMR, IR, and mass spectrometry are discussed. Descriptive chemistry of main group elements is examined. Conductivity, magnetism, superconductivity, and an introduction to bioinorganic chemistry are additional topics in the course. In lieu of the laboratory, students have a project on a topic of their choice. Serves as an advanced chemistry elective for biochemistry majors.

What happened to my green solution?

Submitted by Anthony L. Fernandez / Merrimack College on Wed, 01/10/2018 - 16:29
Description

Students in inorganic chemistry courses are often interested in the colors of transition metal complexes. This in-class activity serves an introduction to reactions of coordination complexes and pushes students to think about the relationship between the color of a complex cation and its structure. Students are provided with pictures of aqueous solutions of two chromium(III) salts [CrCl3*6 H2O and Cr(NO3)3*9 H2O] at two different times and are then asked to explain the changes observed in the solutions.

Literature Discussion of "A stable compound of helium and sodium at high pressure"

Submitted by Nicole Crowder / University of Mary Washington on Sat, 06/03/2017 - 11:26
Description

This paper describes the synthesis of a stable compound of sodium and helium at very high pressures. The paper uses computational methods to predict likely compounds with helium, then describe a synthetic protocol to make the thermodynamically favored Na2He compound. The compound has a fluorite structure and is an electride with the delocalization of 2e- into the structure.

This paper would be appropriate after discussion of solid state structures and band theory.

The questions are divided into categories and have a wide range of levels.

Quantum Dot Growth Mechanisms

Submitted by Chi / United States Military Academy on Sat, 06/03/2017 - 11:01
Description

This literature article covers a range of topics introduced in a sophomore level course (confinement/particle-in-a-box, spectroscopy, kinetics, mechanism) and would serve as a an end-of-course integrated activity, or as a review activity in an upper level course.

calistry calculators

Submitted by Adam Johnson / Harvey Mudd College on Wed, 01/18/2017 - 18:17
Description

I just stumbled on this site while refreshing myself on the use of Slater's rules for calculating Zeff for electrons. There are a variety of calculators on there including some for visualizing lattice planes and diffraction, equilibrium, pH and pKa, equation balancing, Born-Landé, radioactive decay, wavelengths, electronegativities, Curie Law, solution preparation crystal field stabilization energy, and more.

I checked and it calculated Zeff correctly but I can't vouch for the accuracy of any of the other calculators. 

Basics of Lanthanide-Based Photophysics

Submitted by Jacob Lutter / University of Southern Indiana on Thu, 06/30/2016 - 14:27
Description

This 5 slides about outlines the basics of lanthanide photophysics as a primer for those new to the topic.  These properties are very unique and actually very useful, which is a topic for another time.  The intricacies of what causes the Ln luminescence, its strengths and drawbacks are discussed along with how these drawbacks are addressed in molecular complexes.  Notes for the instructor are included that explain each slide.

Online Homework for a Foundations of Inorganic Chemistry Course

Submitted by Sabrina Sobel / Hofstra University on Mon, 06/27/2016 - 18:08
Description

The Committee on Professional Training (CPT) has restructured accreditation of Chemistry-related degrees, removing the old model of one year each of General, Analytical, Organic, and Physical Chemistry plus other relevant advanced classes as designed by the individual department. The new model (2008) requires one semester each in the five Foundation areas: Analytical, Inorganic, Organic, Biochemistry and Physical Chemistry, leaving General Chemistry as an option, with the development of advanced classes up to the individual departments.

Inquiry-Based Introduction to Carbonyl Ligands

Submitted by Emily Sylvester / Duquesne University on Mon, 06/27/2016 - 17:20
Description

This in-class worksheet introduces students to the different ways we describe organometallic ligands – bonding, properties, spectroscopy, etc. – using carbon monoxide as an example. It is structured as an inquiry-based activity, where students work together in small groups but check in with the entire class at appropriate intervals. I plan to use this activity with my advanced inorganic students next year.

Will it Float? Density of a Bowling Ball Activity

Submitted by Terrie Salupo-Bryant / Manchester University on Mon, 06/27/2016 - 15:17
Description

This activity was adapted from the J. Chem. Ed. article, “Discrepant Event: The Great Bowling Ball Float-Off.” In this activity students use a bowling ball and some basic materials to predict whether the ball will sink or float in a tub of liquid. 

Chapter 1--Stanley Organometallics

Submitted by George Stanley / Louisiana State University on Fri, 06/10/2016 - 14:45
Description

chapter 1 of George Stanley's Organometallics course: Introduction, Orbitals, Electron counting

This chapter is an overview of the field, with an emphasis on electron counting

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I shares these with students after the class, but not before.

everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.