WebCSD Teaching Database
Hilary first higlighted this resource as a news item before we had a web resource category. I'd like to bring it back to people's attention as a web resource because of its value.
Hilary first higlighted this resource as a news item before we had a web resource category. I'd like to bring it back to people's attention as a web resource because of its value.
In the 2013 Inorganic Curriculum Survey, respondents were asked about the resources they used when they teach inorganic chemistry. About 20% of respondents selected "other" and provided information about these resources. A number of people mentioned specific websites. This collection consists of the websites submitted in the survey.
This website was put together by David W. Mogk, Montana State University–professor of geology and contra/square dance caller. Using square dancing, he shows symmetry elements present in space groups. There are videos on the website, but everything seems simple enough to do in class.
Students use a Java-based website to explore the faujasite zeolite structure. The activity questions guide them through identifying different atomic positions within the structure, and orienting the zeolite pores and "cages" relative to the crystal axes.
This lab handout and supplementary materials were developed based on a publication in the Journal of Chemical Education:
Berger, P.; Adelman, N.; Beckman, K.; Campbell, D.; Ellis, A.; Lisensky, G. Preparation and Properties of an Aqueous Ferrofluid. J. Chem. Educ. 1999, 76 (7), 943-48
I used this paper to illustrate several course concepts related to materials structure (crystal lattice structure, coordination number, crystal field theory and orbital splitting, symmetry, electronic spectra, allowed and forbidden transitions). This activity was paired with a laboratory experiment (see related VIPEr objects) in which students synthesized Prussian Blue, and gave students a really in-depth look at what was going on when they mixed those solutions together.
In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning.
This is an in-class PDB exercise based on the paper "Mechanisms Controlling the Cellular Metal Economy" by Gilston and O'Halloran. Students are asked to visualize the metal binding sites of several proteins discussed in the paper, highlighting unusual metal geometries. After identifying the amino acid residues involved in metal binding, students will discuss the bond structure in terms of HSAB theory.