Synthesis and reactivity

14 Aug 2017

Chapter 11--Stanley Organometallics

Submitted by George G. Stanley, Louisiana State University
Description: 

Chapter 11 from George Stanley's organometallics course, Ligand Substitution

 

this chapter covers ligand substitution reactions.

The powerpoint slides contain answers to some of the in-class exercises, so those are behind the "faculty only" wall. I share these with students after the class, but not before.

Everyone is more than welcome to edit the materials to suit their own uses, and I would appreciate being notified of any mistakes that are found.


Subdiscipline: 
Corequisites: 
Course Level: 
9 Jun 2017

Catalysis: Iron-catalyzed Arylation of Alkyl Halides

Submitted by Bradley Wile, Ohio Northern University
Evaluation Methods: 

Students completed a full lab report for this activity, in which they described their results, including specific responses to the questions in the handout. This was evaluated using the rubric in the instructor notes. The report is graded out of a total of 50 points. 

Evaluation Results: 

Overall, students did well. The grade range for most students is 40/50 to 50/50. This rubric and set of questions is the result of iterating a similar experiment using a different organic transformation. 

Students had some unexpected proposals for the structural details that might explain catalytic activity (or lack thereof). In most cases, I was fine with these being incorrect (or less likely to be correct), if they carried this logic through their response to question 3. If the students propose a new ligand that will address their hypothesis, great! We can go in the lab and test these with the next group. If a student proposes a reasonably priced ligand, I generally buy it for next year's group to try out. 

Question 4 (chirality) prompted some vague responses. I need a more detailed prompt and discussion about this point. I think it is relevant since the word "chirality" immediately grabs the attention of many organic chemists and students who are interested in organic aspects of catalysis.

If I am pressed for time to discuss TON/TOF in class, students will generally ask more questions about how to calculate these values. I may incorporate Sibrina Collins' activities about TON/TOF in future (see above links) to address these in greater detail in the lecture course. 

Description: 

This LO describes a laboratory experiment in which students generate (in situ) an iron catalyst for the arylation of alkyl halides (Kumada coupling). Students pool data from the class to discern what features lead to successful catalyst systems. GC-MS or GC-FID may be used to quantify the catalytic performance of each system, and results may be expressed as % conversion, with TON/TOF values. Students gain experience proposing reasonable coordination complexes that may be formed from the catalyst precursors, and searching the literature/databases for related compounds/systems. Students write a full report, and address the questions listed in the handout. 

Course Level: 
Corequisites: 
Subdiscipline: 
Learning Goals: 

To explore the use of transition metal complexes as homogeneous catalysts for an organic transformation. As a group, to identify the possible influence of spectator ligands on catalytic performance by pooling data. Specific technical and educational objectives are:

  • Students will be able to operate the inert atmosphere glovebox and block reactor to conduct a (mostly) air-free reaction
  • Students will be able to analyze gas chromatographic (GC) data to determine the percent conversion, TON, and TOF for a catalytic system
  • Students will be able to use data from in situ experiments to propose a structure for an active catalyst
  • Students will be able to draw conclusions about the relationship between steric and electronic parameters of ligands and catalyst performance 
Topics Covered: 
Equipment needs: 

GC-MS or GC-FID (other detectors may be used, but I have not quantified using these).

I run this using a vial in an Al heating block, but an oil or water bath would work just as well.

Reagents and solvents are listed in the instructor notes (with CAS numbers).

Implementation Notes: 

I created this experiment as a way to introduce catalysis without the need to rationally prepare new compounds for each group. I would like to use the wisdom of the group to find out what tweaks are needed to adapt this experiment to other institutions/courses. If you would like to conduct this experiment with your students, it would be great if we could compile data from your group using the Google Spreadsheet link embedded in the instructor notes. Ultimately, I would like to publish this experiment in JCE or similar if it is well received. Although this experiment has only been run once using this organic transformation, a previous version using a hydrosilylation reaction was successfully employed for five years previous to this.

In the lecture, students will have covered the formation of coordination complexes, as well as types of ligands, electron counting, etc. I use catalysis as a motivation and starting point for several of my discussions throughout the semester, so while they will not have discussed this explicitly, they will have all of the components mentioned in this experiment. Typically, I will discuss catalysis and turnover one or two lectures after the in lab portion of this experiment, so students are already grappling with TON/TOF calculations. I do not cover GC interpretation explicitly in lecture, since all of our students will have spent a little time on this in the organic chemistry majors lab. Most questions can be handled with an impromptu discussion about data interpretation. 

DISCLAIMER - The nature of the experiment (novel catalysts generated in situ) leads to some unpredictability. If you (or your students) aren't up for an element of surprise in your catalytic data, this may not be for you. I pitch the experiment to the students this way, and offer to conduct a different (but probably less exciting) experiment if they are concerned about the potential for poor/no catalytic activity. So far no one has taken me up on this offer.

Time Required: 
~1 laboratory period (3 hours) + 20 minutes for GC setup and data processing
3 Jun 2017

Literature Discussion of R3CH→ SiFR3 Agostic Interactions

Submitted by Tanya Gupta, South Dakota State University
Evaluation Methods: 

Some discussions questions can be taken out and used for exams, quizzes or problem sets.

The instructor can develop a rubric to evaluate these questions based on their needs.

Evaluation Results: 

Monitoring student discussions, or grading student written responses based on implementation.

Description: 

The set of questions in this literature discussion activity is intended to engage students in reading and interpreting scientific literature and to develop a clear and coherent understanding of agostic interactions. The activity is based on a paper by Dorsey & Gabbai (2008). The paper describes agostic interactions in a silicon-based compound (R3C-H→SiFR3). The set of questions in this literature discussion activity is appropriate for an upper division course in inorganic chemistry. The research described in the article ties together concepts of agostic interactions and their impact on the coordination geometry of a Lewis acidic species. The discussion activity includes guided questions for students to understand and determine the presence of agostic interactions experimentally and through computational methods. The activity has specific questions related to bonding, structure, synthesis, characterization, theoretical and computational methods used in the literature. The activity may require reviewing some secondary sources.

Corequisites: 
Course Level: 
Learning Goals: 

Students will be able to..

  • Define an agostic interaction and relate it to other types of bonding.

  • Describe how the agostic interaction affects the coordination geometry of a Lewis acidic atom.

  • Provide examples of how the presence of an agostic interaction can be determined experimentally and through computational methods.

  • Differentiate between computational methods in terms of the information they can provide.

  • Find related sources of information to aid in comprehension of the concepts in the article.

 

Implementation Notes: 

This literature discussion was developed at the VIPEr 2017 workshop at Franklin and Marshall College so it has not yet been implemented. The authors believed that implementation of this article is best for an inorganic course that is post-organic, post-spectroscopy. It could be helpful after a discussion of 3-center 2-electron bonding and/or Lewis acidity/basicity. As with all lit. discussion LOs, this article also provides a valuable experience in reading the literature, including an interpretation and analysis of the experimental section. There are many questions included in this activity and instructors may want to pick and choose these questions and adapt it to their class.

Time Required: 
1 class (50 minutes)

Pages

Subscribe to RSS - Synthesis and reactivity