Iron Cross-Coupling Catalysis

Submitted by Laurel Goj Habgood / Rollins College on Wed, 09/16/2015 - 13:08
Description

In this experiment, students will synthesize and characterize an iron complex followed by completion of two series of catalytic cross-coupling reactions mimicking the methodology utilized by organometallic chemists to balance catalyst efficacy and substrate scope.  Initially the complex Fe(acac)3 [acac =  acetylacetone] is prepared.  Two sets of catalytic reactions are completed: one comparing different iron catalysts (Fe(acac)3, FeCl2, FeCl3) while the other compares substrates (4-chlorotoluene, 4-chlorobenzonitrile, 4-chlorotrifluorotoluene).

Antibacterial Reactivity of Ag(I) Cyanoximate Complexes

Submitted by Kari Young / Centre College on Sat, 08/22/2015 - 14:09
Description

In this experiment, students will synthesize and characterize one of three Ag(I) cyanoximate complexes as potential antimicrobial agents for use in dental implants. This experiment combines simple ligand synthesis, metalation and characterization, and a biomedical application. The complexes are both air and light stable.

A discussion on "Electrochemical formation of a surface-adsorbed hydrogen-evolving species"

Submitted by Kevin Hoke / Berry College on Thu, 07/02/2015 - 14:22
Description
The paper entitled “Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species” explores the discovery, characterization and catalytic activity of a film that deposited on the electrode while studying a nickel complex under electrocatalytic conditions.
 
This literature discussion includes several sets of questions that address different aspects of the paper, as described in the implementation notes.

Synthesis of Aspirin- A Lewis Acid Approach

Submitted by Kathleen Field / WGU on Mon, 06/29/2015 - 21:29
Description

This is the procedure for a Fe(III) catalyzed synthesis of aspirin, an alternative to the traditionally sulfuric acid catalyzed synthesis of aspirin.  The prep compares and contrasts the Bronsted acid catalyzed esterification reaction with a Lewis acid iron (III) catalyzed pathway.  This can be used in different courses at different levels, but is it written for a general/intro level chemistry course.    

Materials Project

Submitted by Barbara Reisner / James Madison University on Fri, 06/12/2015 - 16:58
Description

The Materials Project is part of the Materials Genome Initiative that uses high-througput computing to uncover the properties of inorganic materials.

It's possible to search for materials and their properties

It employs high-throughput computation approaches and IT to create a system that can be used to predict properties and construct phase diagrams andPourbaix diagrams.

Beautiful Chemistry

Submitted by Adam Johnson / Harvey Mudd College on Wed, 06/10/2015 - 14:42
Description

This is just a cool little website I just happened to stumble upon today while looking for something else at the RSC site. It comes from China, and it is pretty!

Sheila's Safety Net

Submitted by Sheila Smith / University of Michigan- Dearborn on Wed, 06/10/2015 - 12:43

Collection of Safety LOs from VIPEr