Inorganic Chemistry
From syllabus:
From syllabus:
Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory
The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements
Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods
Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.
Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.
An introduction to the chemistry of inorganic compounds and materials. Descriptive chemistry of the elements. A survey of Crystal Field Theory, band theory, and various acid-base theories. Use of the chemical and scientific literature. Introduction to the seminar concept.
During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.
Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."
This literature discussion aims to have students in an advanced inorganic chemistry course interpret reaction schemes and electronic spectra, relate chemical formulae to molecular structure, and gain an understanding of how inorganic synthesis is planned and executed. Students should gain an understanding of how counterions and crown ethers affect structure. Question 7 may be expanded to ask students to why pi-donor ability affects ligand field splitting, or as an introfuction to this topic.
An associated 1FLO based on this paper is linked in the related content.
This paper in Science reports the synthesis of decamethyldizincocene, a stable compound of Zn(I) with a zinc-zinc bond. In the original LO, the title compound and the starting material, bis(pentamethylcyclopentadienyl)zinc, offer a nice link to metallocene chemistry, electron counting, and different modes of binding of cyclopentadienyl rings as well as more advanced discussions of MO diagrams.
This course introduces the organometallic chemistry of the transition metals and main group elements with emphasis on common structural features and basic reaction types. The role of organometallic complexes in catalysis is also explored.