Learning from UCLA

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Sat, 09/20/2014 - 19:47

This learning object is designed to spark discussion and educate students taking an inorganic chemistry course about laboratory safety.  It uses the article "Learning from UCLA" by Jyllian N. Kemsley (Chemical & Engineering News (2009), Vol. 87 Issue 31, pp.

Fe2GeS4 Nanocrystals for Photovoltaics

Submitted by Anne Bentley / Lewis & Clark College on Mon, 09/15/2014 - 14:00

I asked the students in my junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Student Johann Maradiaga chose this article describing the synthesis and characterization of Fe2GeS4 nanocrystals with potential applications in photovoltaic devices (Sarah J. Fredrick and Amy L. Prieto, “Solution Synthesis and Reactivity of Colloidal Fe2GeS4: A Potential Candidate for Earth Abundant, Nanostructured Photovoltaics” J. Am. Chem.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

Suite of LOs on Biomimetic Modeling

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 09:52

This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules.  The Parent LO:  Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.

A cuprous azide complex: The effect of structure on the stability of the azide ion

Submitted by Jim Jeitler / Marietta College on Thu, 07/17/2014 - 17:50

This is a problem set based on the article "Energetic Cuprous Azide Complex: Synthesis, Crystal Structure and Effection on the Thermal Decomposition of HMX" in the Journal of Chemical Crystallography.  It has been used in a Chemistry Capstone course for both Chemistry and Biochemistry majors during the first semester senior year.  Biochemistry majors are not required to take Inorganic Chemistry and Chemistry majors may be currently taking Inorganic chemistry.

Modeling post-translational modification in cobalt nitrile hydratase with a metallopeptide from Anne Jones

Submitted by Kari Young / Centre College on Thu, 07/17/2014 - 16:23

In this literature discussion, students read a paper about a cobalt metallopeptide that imitates the active site of the enzyme nitrile hydratase.  Specifically, the model complex is oxidized by air to produce a coordination sphere with both cysteine thiolate and sulfinic acid ligands, much like the post-translationally oxidized cysteine ligands in the biological system.

The relevance of Transition Metal-Carbon Bonds in Biology and Chemistry

Submitted by Mwalimu / Russell Sage College on Tue, 07/15/2014 - 12:45

The students will write a paper in which they analyze the Vitamin B12 co-enzyme from biological, chemical and biochemical perspectives, and will use the guided questions to help show the relevance of an organometallic chemistry experiment to real biochemical systems. This activity is based on a synthetic lab experiment that students would have performed on transition metal-carbon bonds in biology and chemistry (The lab experiment was adapted from third edition of “Inorganic Experiments” by Derek Woollins).

The Synthesis and Characterization of a trans-Dioxorhenium(V) Complex

Submitted by Sibrina Collins / Marburger STEM Center (MSC) at Lawrence Technological University on Mon, 07/14/2014 - 12:31

This experiment involves the preparation of a key starting reactant in high purity and yield for an ongoing research project, specifically for the development of potential photodynamic therapy (PDT) agents. The students synthesize [ReO2(py)4]Cl.2H2O using standard inorganic synthesis techniques. The students visualize the vibrations and electronic properties (e.g. molecular orbitals) of the compound using output files generated from density functional theory (DFT).