Orbital Overlap and Interactions
This is a simple in-class activity that asks students to utilize any of the given available online orbital viewers to help them identify atomic orbital overlap and interactions.
This is a simple in-class activity that asks students to utilize any of the given available online orbital viewers to help them identify atomic orbital overlap and interactions.
This is a literature discussion based on a 2018 Inorganic Chemistry paper from the Lehnert group titled “Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases“(DOI: 10.1021/acs.inorgchem.7b02333).
The associated paper by Lehnert et al. uses DFT to investigate the reaction mechanism whereby a flavodiiron nitric oxide reductase mimic reduces two NO molecules to N2O. While being a rather long and technical paper, it does include several figures that highlight the reaction profile of the 4-step reaction. This LO is designed to help students learn how to recognize and interpret such diagrams, based on free energy in this case. Furthermore, using a simple form of the Arrhenius equation (eq.
This literature discussion is an expansion of a previous LO (https://www.ionicviper.org/literature-discussion/tetrahedral-tellurate) and based on a 2008 Inorganic Chemistry article
This acitivty is a foundation level discussion of the Nicolai Lehnert paper, "Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases". Its focus lies in discussing MO theory as it relates to Lewis structures, as well as an analysis of the strucutre of a literature paper.
This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever!
We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab.
In honor of Professor Richard Andersen’s 75th birthday, a small group of IONiC leaders submitted a paper to a special issue of
When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures. I also have students access structures both in and out of class as they complete assignments.
This is a great app that helps students see the symmetry in molecules. It allows you to choose a molecule (by name, structure, or point group) and display a 3D rendition of it. You can then have it display the symmetry elements, and/or apply all the symmetry operations.
It is available for both android and apple phones: (probably easier to just search for it)
apple: https://itunes.apple.com/us/app/3d-sym-op/id1067556681?mt=8
For inorganic lab, I have my students write their lab reports in the style of the journal Inorganic Chemistry. The first week of lab, we spend time in small groups looking at several examples of recent articles from Inorganic Chemistry, focusing mainly on the experimental section and the abstract (as these are included in every lab report). We then come back together as a class to have a discussion of each of the sections in the articles. We discuss what was included in each section, what wasn’t included, and the style, tone, tense, and voice of each section.