Interpreting XPS and CV data from an Electrocatalysis Publication
This is a learning object focused on analyzing a specific figure from a research article that show XPS and CV data on Ni(OH)2/NiOOH thin films that have incorporated Fe.
This is a learning object focused on analyzing a specific figure from a research article that show XPS and CV data on Ni(OH)2/NiOOH thin films that have incorporated Fe.
This learning object is based on discussion of the literature, but it follows a paper through the peer review process. Students first read the original submitted draft of a paper to ChemComm that looks at photochemical reduction of methyl viologen using CdSe quantum dots. There are several important themes relating to solar energy storage and the techniques discussed, UV/vis, SEM, TEM, electrochemistry, and catalysis, can be used for students in inorganic chemistry.
This question set has students examine the kinetics of the electrocatalytic reduction of CO2 to CO described in Sampson, D.L.; Nguygen, D., Grice, K.A.; Moore, C.E.; Rheingold, A.L.; Kubiak, C.P. Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis. J. Am. Chem. Soc. 2014, 136, 5460-5471.
This Learning Object involves reading a recent scientific journal article, answering questions relating to the content, and participating in a classroom discussion. The paper under review is “Regeneration of an Iridium (III) Complex Active for Alkane Dehydrogenation Using Molecular Oxygen,” Organometallics, 33, 1337-1340. DOI: /10.1021/om401241e).
Upper division literature discussion of a JACS paper on electrocatalysis. This activity serves as an introductory look at the paper as a homework assignment to prepare the student for a more in depth class discussion.
This is a learning object focused on discussing application of the scientific method in the chemical literature. This focuses on the paper “Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation” (J. Am. Chem.
Five slides about how to systematically determine the irreducible representation if provided an unlabeled SALC. These slides focus on molecular orbitals, but this tool can be extended to any kind of SALC.
At this website, you will find a link to the syllabus and all lecture videos for a "flipped" version of an Advanced Inorganic Chemistry Course taught at Saint Mary's College (Notre Dame, IN). I used Shiver & Atkins for this course, and the format is based off of Dr. Franz's course at Duke. If anyone is interested in the problem sets, I will be happy to share, although much of the material I used is from VIPEr.
In this activity, students in my upper-level Inorganic course are given two possible structures of sulfur dioxide, and based on an assessment of given vibrational modes, they determine which of the modes are IR active by two methods: (1) the “Intro Chem” method (determing whether the dipole moment changes for a particular vibrational mode) and (2) using character tables. They compare their assessment to experimental IR absorption peaks, and the students decide which structure is valid. For those of you who teach Raman spectroscopy, it could be included in this LO as well.