Science Skills, Practices, and Resources

20 Jun 2009
Description: 

All VIPEr learning objects are supposed to include clear student learning goals and a suggested way to assess the learning. This "five slides about" provides a brief introduction to the "Understanding by Design" or "backward design" approach to curriculum development and will help you develop your VIPEr learning object.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Faculty will

  • understand the "backward design" concept
  • learn to write learning outcomes and assessments using the verbs ("activities") and "products" provided
  • learn how a rubric can be used to discriminate students' levels of achievement
Implementation Notes: 

These slides are a quick and dirty summary of a longer hands-on faculty development workshop I do. They provide an introduction to the Understanding by Design process, help in writing learning goals, suggestions for developing assessments of student learning, and helpful hints for preparing a VIPEr learning object.

Time Required: 
15 minutes to read the slides; a lifetime to practice the skill :)
Evaluation
Evaluation Methods: 

I hope that faculty will use these slides to aid their writing of learning goals and assessments for the VIPEr site.

26 Mar 2020
Evaluation Methods: 

Student learning is assessed by answers to simple scenario based questions accompanying this resouce.

Description: 

One of the features of the laboratory associated with my Inorganic chemistry course is learning to do some air sensitive chemistry using Schlenk lines (and sometimes gloveboxes).  Of course, COVID19 is keeping us out of the lab this year!  This is a collection of short web based resources (text and video) detailing begining use of a Schlenk line, something about drying and degassing solvents, and transferring liquids to a reaction flask.  It is accompanied by questions I am having students answer as part of the alternate lab I am creating in place of our usual organometallic lab experiemnt.  If you have a favorite resource that might be better/supplement the ones I found, please add to the comments!

Prerequisites: 
Course Level: 
Learning Goals: 

A student will be able to explain the basic operation of a Shlenk line and how to add reagents and solvents to a flask under inert atmosphere.

Corequisites: 
Time Required: 
2 hours, if all videos are watched and resources read.
12 Mar 2020

iPad Screen Recording

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

I do not assess their performance on creating the videos. The fact that they are able to submit the videos to me successfully is evidence that they have followed the instructions.

I have students peer-review videos created by other students. They are asked to provide feedback on the content and correctness of the video, as well as the quality of the presentation.

Evaluation Results: 

Students and faculty usually have little trouble following these instructions. The most common errors are listed below.

  • The video creator forgets to turn on the audio recording before beginning the screen recording process.
    • If this happens, the video must be re-recorded with the microphone on or the audio must be added using another program, such as iMovie.
  • The video cannot be edited to remove the "dead time" at the beginning and end of the video.
    • The iPad screen is very touchy and it can be hard to get the video selected and highlighted. It takes a bit of practice.
  • The video creator exports a video without sound.
    • This means that the iPad is running an older version of the iOS and the other set of instructions must be followed.
Description: 

Many faculty and students now have iPads and Apple Pencils for use in their classes. At Merrimack, we have a 1:1 iPad program (called Mobile Merrimack) in which all students and faculty are provided an iPad and students are also given an Apple Pencil and a keyboard. (Departments must purchase Apple Pencils for faculty members.) My department has leveraged this initiative in many ways and the iPad has been incorporated into the general chemistry and organic chemistry sequences, and into many of our upper-level courses.

The iPad is a really great tool for creating educational videos for classes, especially when paired with an Apple Pencil to facilitate writing on the screen in a very natural manner. It is very easy to create videos on your iPad using the Screen Recording Feature that is part of recent version of the iOS. When the Screen Recording is activated, anything shown on the iPad screen is captured to video and audio can be recorded using the built-in microphone or any connected microphone. My go-to iPad app for handwriting is Notability and I use the screen recording function to capture my writing and audio. Any app that you prefer can be used. (I have attached two videos as examples - one with audio and one without audio.)

My colleagues and I use the iPad to create videos that we distribute to our classes via our LMS (Blackboard or Google Classroom). I have also given my students the opportunity to demonstrate mastery of topics and concepts by creating narrated videos on their iPad and submitting them to me for credit (or for extra credit when revising exams). The linked instructions are those that I provide to my students and colleagues so that they can create videos on their own.

I have tried to keep these up to date with the changes in the operating system and I would appreciate any feedback that you have on these instructions. There are two versions of the instructions linked to this LO: one for current version (13) of the iOS and one for older versions of the iOS. I would also be happy to add any other information that you feel is necessary as you work through the recording process.

Please feel free to reach out to me if you need any help.

Topics Covered: 
Corequisites: 
Prerequisites: 
Learning Goals: 

After reading these instructions, a student or faculty member should be able to:

  • start the screen recording function on an iPad,
  • record a video that captures the iPad screen along with audio from a microphone,
  • save the video in their photo stream,
  • edit out the portions at the beginning and end of the video, and
  • export the video to a cloud service for sharing with others.
Implementation Notes: 

There are many ways to create videos on the iPad and some of those involve apps that cost money to purchase. This method for recording videos takes advantage of functionality built into iOS and will record anything shown on the iPad screen.

As mentioned in the description, I use this method to create videos for my students. I also provide these instructions to my students so that they can create videos that they can submit to me. 

Time Required: 
variable; depends on the length of the video
9 Jan 2020

Marvin suite from ChemAxon

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

As my students draw structures, I usually observe them and make suggestions to improve their drawings. 

Evaluation Results: 

While I do no formal assessment of this activity, I have observed that students seem to learn how to use the program fairly quickly and then use it without much difficulty for the rest of the semester.

Description: 

It is important for students to be able to effectively communicate the results of their scientific work. This does not only inlcude written and oral communication, but the creation of appropriate representations of the complexes they have investigated. It is crucial that students learn how to draw molecules using electronic structure drawing programs, but site licenses for structure drawing programs can be prohibitive for some institutions.

Marvin suite is a software package from ChemAxon that is freely avaialble for educational institutions. It contains a structure drawing program (MarvinSketch) and a viewer (MarvinView), as well as tools that allow for the calculation of many molecular and spectroscopic properties of molecules. This is a very useful suite of programs that can be used by all students and faculty at an instituion once an Academic License is obtained.

A set of directions for drawing a coordination complex in MarvinSketch is also included as part of this learning object. These directions will guide the user as they draw the structure of a square-planar coordination complex, trans-[Ni(NCS)2(PMe3)2].

Corequisites: 
Prerequisites: 
Learning Goals: 

After following the instructions, students should be able to draw a chemical structure electronically using a chemical structure drawing program.

Once the structure in drawn in the program, a user would then be able to access the many other functions available in the software.

Implementation Notes: 

During the first week of our semester, lab sections are usually not held for courses so that student enrollment issues can be sorted out. In an advanced course such as Inorganic Chemistry, I want to take advantage of every week that I can so I use the first lab meeting time to have students learn how to use several software programs that they wil use over the course of the semester. 

I post the download link and the license file for the software on the course LMS before the lab period and I ask the students to download and install the software. You should make sure that students update their Java installation before installing the Marvin suite. (I also place a link to the Java download site on the course LMS as well, but students tend to ignore it.) Aside from the Java issue, I have found that there are no real issues encountered by students when they install the software. 

When we meet, I ask the students to follow the linked instructions to create a drawing of a coordination complex. Once they complete that successfully, I ask them to draw several other structures. I do not  have any specific structures that I use, but I try to choose complexes with different geometries (octahedral, tetrahedral, square pyramidal, etc.) around the metal center.

The Marvin suite of programs provides the students with a number of useful tools, not just a structure drawing progam. Students use this to calculate or estimate a number of different things, such as the molecular mass, the elemental analysis, a mass spectrum, 1H and 13C NMR, and charge distribution.

To obtain a license file, the faculty member must log into the ChemAxon site and request an Academic License. Once approved, the instituion is allowed to use the software for 2 years and the license can be easily renewed when it expires.

 

Time Required: 
30 minutes
8 Jan 2020

How to Read a Journal Article: Analyzing Author Roles and Article Components

Submitted by Catherine McCusker, East Tennessee State University
Evaluation Methods: 

Follow up small group work with a class discussion of the correct answers. Grade students on participation and completness

Description: 

This literature discussion uses a recently published article on solvatochromic Mo complexes to introduce students to the different components of a research article. The activity is divied into to two parts. Before class students read the paper and focus on defining terms, investigating the "meta" data of the paper, and the different sections iof the paper. In class the students work in groups to investigate the scientific content of the paper

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

Students should be able to:

  • Interpret the roles that authors play in a research project
  • Recognize the different sections of a research article and the purpose of each section
  • Understand how to access supporting information and the type of information found there
  • Find key conclusions of a research paper and the experimental evidence the author used to make those conclusions
Time Required: 
~30 min (if students complete part 1 before class)
18 Jul 2019

Science Information Literacy Badge--Reading the Literature

Submitted by Michelle Personick, Wesleyan University
Evaluation Methods: 

I use this activity as a "badge," which is self-paced guided skill-building activity that students complete on their own time outside of class. Badges are designed around fundamental chemistry skills that students wouldn’t necessarily acquire from standard course content and lectures. They carry a very small point value (about 2% of the course total per badge) but my students are very motivated by even small amounts of points. I assign points primarily based on completion and effort and also provide brief written feedback for each student. I have my students turn in badges in Moodle, which makes feedback more streamlined.

Description: 

This is an activity designed to introduce general chemistry students to reading the chemistry literature by familiarizing them with the structure of a published article. The activity first presents an article from the Whitesides group at Harvard about writing a scientific manuscript, along with a video about the peer-review process. There are two parts to the questions in the activity, which are based on a specific article from Nature Communications (doi.org/10.1038/s41467-019-08824-8). Part I is focused on the structure of the article and where to find key pieces of information. Part II encourages students to use general audience summaries in combination with the original article to best understand the science while making sure they get a complete and accurate picture of the reported work.

Prerequisites: 
Course Level: 
Corequisites: 
Learning Goals: 

A student should be able to approach the chemistry literature and determine where to find:

  • the authors and their affiliations;
  • the main objective of the research;
  • the main outcomes of the research;
  • why the research is important;
  • experimental details;
  • supplementary figures and other information. 

A student should be able to broadly evaluate the reliability of secondary summaries of scientific articles by comparing them against the key points of the original paper.

Implementation Notes: 

This activity is based on a specific article: "Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces" (Nat. Commun., 2019, 10, 865. doi.org/10.1038/s41467-019-08824-8). However, it's easily adapted to other articles that are more suited to a particular course, and I've used other articles in previous iterations. This article was chosen because the content is at least partly accessible to students in my second semester general chemistry course, who have already had some electrochemistry/redox chemistry, and who have recently learned about kinetics, reaction mechanisms, and catalysis. The topic of liquid metals is new and interesting to the students, because it's not something the'd normally be exposed to, and the application to CO2 sequestration is something they can connect with. 

 

9 Jun 2019

An improved method for drawing the bonding MO for dihydrogen

Submitted by Adam R. Johnson, Harvey Mudd College
Evaluation Methods: 

When I do this correctly, the students don't accidentally see something which may make immature students giggle.

Evaluation Results: 

I have had multiple colleagues tell me that this technique worked for them and saved them from repeating an embarassing classroom event.

Description: 
Most of us have probably been there. Discussing homonuclear diatomic MO diagrams and on the first day you want to put up the sigma bonding molecular orbital for H2. If you teach it like me, you emphasize the LCAO-MO approach, so you draw a hydrogen atom with its 1s orbital interacting with a hydrogen atom with its 1s orbital...and then you notice giggling from the less mature audience members. My technique will help to prevent this from happening. The technique is in the "faculty only" files section.
Learning Goals: 

The instructor will draw the bonding MO of dihydrogen without accidentally causing laughter in the class or self embarassment.

Corequisites: 
Equipment needs: 

chalkboard or whiteboard

ability to adjust quickly just in case

Prerequisites: 
Implementation Notes: 

I have come close to accidentally drawing the incorrect version of this diagram and I am able to stop myself quickly as illustrated in the instructions. 

Time Required: 
a minute to learn, a lifetime to master.
8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

7 Jun 2019

Guideline for drawing chemical structures

Submitted by Bradley Wile, Ohio Northern University
Description: 

This is the set of guidelines provided for authors by Nature Research. A 6-page PDF gives explicit guidance about rendering molecules using chemical drawing software, and a downloable ChemDraw template (.cds) is provided.

Prerequisites: 
Corequisites: 
Related activities: 
Implementation Notes: 

I give this to all of my research students as part of the welcome to the group package.

6 Jun 2019
Evaluation Methods: 

The guided reading questions may be graded using the answer key. 

Evaluation Results: 

These questions have not yet been assigned to students.

Description: 

Guided reading and in-class discussion questions for "High-Spin Square-Planar Co(II) and Fe(II) Complexes and Reasons for Their Electronic Structure."

Course Level: 
Learning Goals: 

1.  Bring together ligand field theory and symmetry.

  1. Students should be able to identify symmetry of novel molecules in the literature.

  2. Students should be able to explain d-orbital ordering in a coordination complex using ligand field theory.

  3. Students should be able to identify donor/acceptor properties of previously unseen ligands.

  4. Students should be able to apply your knowledge of electronic transitions to the primary literature.

  5. Students should be able to become more familiar with 4-coordinate geometries.

  6. Students should be able to predict magnetic moments of high-spin and low-spin square-planar complexes.

  7. Students should be able to identify properties of ligands that favor formation of the highly unusual high-spin square planar complexes.

2.  Students should comfortable with reading and understanding primary literature.


 

Related activities: 
Implementation Notes: 

You do not have to assign all of the guided reading questions at once.  You may consider assigning questions as they pertain to where you are in your inorganic chemistry class.

Time Required: 
this has not been used yet for in-class discussion.

Pages

Subscribe to RSS - Science Skills, Practices, and Resources