Nanochemistry

15 May 2020

Inorganic Active Learning Lesson Plan Design

Submitted by Meghan Porter, Indiana University
Evaluation Methods: 

I use the rubric provided, combined with the peer review feedback (due to COVID, they did not have the chance to revise after the peer review process).  Students must also upload a key with their activity which allows me to catch any misconceptions or inaccuracies in their understanding of the material.

I assigned points as following:

Assignment/Key: See above rubric

Reflection: Worth 5 points total- while mostly graded on completion, I did want to be sure my students were providing more useful feedback than 1 word answers so I gave them the rubric below. (pretty much everyone got a 5)

Completed Reflection

5

3

1

What did you learn from completing this assignment? (i.e. What do you feel that you gained from completing it?)

What did you learn from completing other students' assignments?

What are your thoughts for improving the active learning lesson plan assignment in future iterations?  You may answer this referring to your specific lesson plan or this actual assignment of creating a lesson plan.

 

Meets all criteria at a high level, all questions are thoughtfully addressed

Meets some criteria, some questions are not addressed or non-thoughtful response provided

Meets few criteria, most questions not addressed or responses do not demonstrate thought

Peer Review: Spring 2020 was my first time doing the peer review, and of course covid definitely changed the way I had planned on completing it.  My plan was to have them exchange activities in class or in recitation, work through them in small groups, then be able to provide feedback.  Instead, they had to complete it online and provide feedback- I gave them the basic rubic, but changed the scores to categories of "exceeds expectations", "meets expectations", and "does not meet expectations".

Evaluation Results: 

I am always blown away by the creativity of my students!  While some students submit more group worksheet activities, I have had plenty come up with games, relays, building/using playdough, etc...

Students usually report that they thought they knew a topic- only to begin making an activity and realize they didn't understand it as well as they thought they did.  However, by the time the submitted their activity, they felt like they gained a much more in-depth understanding.  They also loved getting to complete other students' assignments this semester.  Their feedback indicated that they felt it was a great way to review, but also get some insight into how their peers think differently about topics.

Side note: Personally, I love seeing how many students tell me afterward that they have a newfound respect for professors after trying to make their own activity! :-)

Description: 

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold:

1. My class is about 100-150 students per semester.  This means that each semester I have a large number of new activities (that I didn't have to make!) to use as a starting point in future semesters as I work to create a more active classroom.

2. The students get a review of the topic they have chosen for their activity, plus, they get to review additional topics from completing and providing feedback on two activities from their peers.

I have run this assignment for three semesters now.  It has been a favorite of my students since the beginning!  I have received a number of activities that I now use in class to teach topics!

Learning Goals: 

A student should be able to

  • Create a lesson plan on an inorganic topic that incorporates active learning
  • Demonstrate understanding of chosen topic via an accurate lesson plan key
  • Review multiple inorganic topics through completion of lesson plans from classmates
  • Provide constructive feedback on classmates’ completed lesson plans

 

Equipment needs: 

None

Corequisites: 
Prerequisites: 
Implementation Notes: 

Since this can be used for any level or any topic, there are plenty of variations you can try!  Some things to consider:

1. You can allow students to select any topic from the entire semester for their activity- this can be helpful prior to a final exam when you want a comprehensive review.  You can also restrict topics if you have areas that you feel your students need to focus on or if you want to assign this before a specific exam.  One of my students also suggested having a sign up sheet for topics on a first-come, first-served basis so that you don't end up with 20 balancing redox reactions and zero crystal field splitting.

2. I have tried students designing plans individually and also working in partners to create acitivties (both outside of class).  Both methods worked well, but in a class of 150, that many individual submissions to grade was a bit overwhelming!

3. The peer review was new this semester (based on a previous student suggestion).  My original plan was have them use a recitation section to work in groups through randomly assgined activities.  Due to COVID, they completed the activites on their own- they enjoyed it, but the group experience would ave been more fun.

4. Depending on your timing, you could have them go through the peer review process and then give them a chance to revise the activity based on the feedback prior to you grading it.

5. The student reflection questions are given as a survey on Canvas after they have completed both the lesson plan and the peer review process.

19 Mar 2020

Online Seminar Talks

Submitted by Amanda Reig, Ursinus College
Evaluation Methods: 

Student summaries are simply graded as complete/incomplete and are checked to see that they did in fact watch the video. If student summaries are felt to be lacking substance or incomplete, we will indicate areas they can improve on future summary reports.

Description: 

In an attempt to find a substitute for our chemistry seminar program, I have found a number of YouTube videos of chemists giving seminar lectures, mostly between 2017-2020. The topics span a range of chemistry disciplines, and are all around 1 hour in length (typical seminar length).  I have not watched them, so I cannot vouch for video quality. Feel free to add additional links in the comments below if you know of or find any great talks.

We will ask students to select and watch a certain number of lectures from the list and then write and submit a one-page summary of the talk.

Prerequisites: 
Course Level: 
Learning Goals: 

A student should be able to summarize the key points of a lecture presented by a seminar speaker.

Corequisites: 
Time Required: 
1 hour
14 Mar 2020

Solid State Structures tutorial

Submitted by Terrie Salupo-Bryant, Manchester University
Evaluation Methods: 

I grade the Solid State Structures tutorial answer sheet (44pts) in conjunction with the Problem Set to Accompany the Solid State Structures tutorial (26 pts) that incorporates concepts from the tutorial.

Evaluation Results: 

The average score (n=32) is 60pts out of 70 (86%).  Scores on the Problem Set tend to be about 5 percentage points higher than on the tutorial.  Students usually spend some time calculating the length of the unit cell edge, a, in terms of the radius (r) of an ion/atom for each of the basic unit cells.  Commonly they substitute diameter for radius or make errors in their trigonometry (see doi.org/10.1021/ed400367x  for derivation).  They also have difficulty seeing an empty hole which causes their percentage of filled octahedral and tetrahedral holes to be incorrect.  I added Figures 6 and 7 for fcc in order to help students in the future know where to look for the holes.  Visualizing 3D structures can be a challenge even to visual learners.  The average score indicates that manipulating structures on the computer makes them more tangible to students.  Wrestling with the questions is often a group effort and an opportunity for students to explain their thinking to others.

Description: 

This tutorial will introduce students to some of the three-dimensional crystal structures exhibited by ionic and metallic solids.  They will examine the simple cubic, body-centered cubic, face-centered cubic, and the hexagonal closest-packed systems.  To facilitate visualization of the structures at the atomic level, they will use the Crystal Explorer website at Purdue University.

Corequisites: 
Prerequisites: 
Learning Goals: 

After completing this tutorial, students will be able to:

  • Identify and describe basic crystal structures from their unit cells.
  • Describe the relationship between crystal packing and unit cell.
  • Determine whether atoms/ions in a crystal structure are closest packed.
  • Locate tetrahedral, octahedral, and cubic holes in a unit cell.
  • Apply geometric relationships to determine the length of a unit cell edge in terms of the radii of its atoms/ions.
  • Determine the coordination number of an atom/ion in a crystal structure.
Implementation Notes: 

The Crystal Explorer website is a free resource that contains all of the images needed to complete this tutorial.

When I teach my foundations-level inorganic chemistry class, I have students use Ludwig Mayer’s Solid State Structures JCE Software to complete this tutorial; however, the software is no longer commercially available.  It utilizes the PCMolecule application which I am still able to access on newer computers by adjusting the compatibility settings.  The images in the software use the same color schemes as the structures in the Solid State Model Kit.  See Teacher Notes for further information. I don’t have students use the model kits, though I do assemble one or two structures for them refer to if they need. 

Students can complete the tutorial in one lab session or in multiple lecture sessions.  I currently use one lecture session to get them started and have them complete it outside of class as a homework assignment.

Time Required: 
2.5 hours (longer if using the Solid State Model Kit)
8 Oct 2019
Evaluation Methods: 

assessment of students will be preformed by grading their answers to the questions in the activity.

Description: 

This is a 1 Figure lit discussion (1FLO) based on a Figure from a 2015 JACarticle on synthesizing conductive MOFs. This LO introduces students to Metal-Organic Frameworks and focuses on characterization techniques and spectroscopy. 

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

As a result of completing this activity, students will be able to...

  • define what metal-organic Frameworks and Post-synthetic Modifications are
  • understand MOF terminology and notation
  • discover how mass transport and electron mobility effect conductivity
  • calculate energies of electronic transitions in electron volts
  • make connections betweeen diagrams and material sturctures
  • compare optical and microscopy techniques
  • discover the concept of photocurrect and how it could be used in different applications
Implementation Notes: 

Students should be able to complete the activity without any prior knowledge of MOFs, although some introduction to MOFs and UV-vis absorption spectroscopy would be nice.

8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

7 Apr 2019

Encapsulation of Small Molecule Guests by a Self-Assembling Superstructure

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

I have not yet implemented this LO. As with other literature discussions, instructors could collect the completed worksheets (by an individual student or in groups of students) for evaluation.

Evaluation Results: 

I have not yet implemented this LO so there are currently no evaluation results to share.

Description: 

This literature discussion focuses upon two journal articles by the Rebek group on the synthesis and host-guest chemistry observed with the "tennis ball." 

Corequisites: 
Learning Goals: 

After completing this literature discussion, students will be able to:

  • provide examples of supramolecular systems in nature that use reversible, weak noncovalent interactions 
  • define terms in supramolecular chemistry such as host, guest, and self-complementary
  • identify the number and location of hydrogen bonds within the "tennis ball" assembly
  • draw common organic reaction mechanisms for the synthesis of the "tennis ball" subunits
  • describe the physical and spectroscopic/spectrometric techniques used to provide evidence for assembly of a host-guest system
  • explain the observed thermodynamic parameters that are important for encapsulation of small molecule guests by the "tennis ball"
Implementation Notes: 

This LO could be used at the end of a traditional 2-semester organic chemistry sequence as an introduction to organic supramolecular systems, as an organic chemistry example within a discussion about inorganic supramolecular chemistry, or in an upper-division elective course about supramolecular chemistry. The LO topic, the "tennis ball," has a published laboratory experiment in J. Chem. Educ. (found here). Time permitting, instructors could have students read the article and complete the literature discussion before executing the experiment in the lab.

As usual, instructors may wish to mix-and-match questions to suit their learning goals.

Time Required: 
depends upon implementation; minimum of 20-30 minutes for the literature discussion if students read an d answer questions outside of class
3 Mar 2019

Supramolecular Chemistry Videos

Submitted by Shirley Lin, United States Naval Academy
Evaluation Methods: 

I have yet to use this resource with students and therefore have no assessment of student learning to share at this time.

Evaluation Results: 

I have yet to use this resource with students.

Description: 

The Rebek Laboratory homepage contains information on and molecular visualizations of a variety of host-guest systems developed by the research group over several decades. The theme behind this set of examples is the use of hydrogen-bonding to achieve self-assembly. Under the "Research" tab, one can find four videos with narration: an introduction to molecular assembly and three videos of specific examples of self-assembled host systems (the cavitand, the cylinder and the volleyball). In addition, at the bottom of the tab, there are links to JSmol files for 5 host systems (tennis ball, jelly donut, cylindrical capsule, softball, and tetrameric capsule) that allow the assemblies to be visualized interactively.

 

This is a great resource for faculty looking for ways to incorporate the new ACS Committee on Professional Training guidelines to discuss macromolecular, supramolecular, mesoscale and nanoscale systems within the framework of their existing curricula.

Corequisites: 
Learning Goals: 

I have not yet used this resource with students but here are some possible relevant learning goals.

After viewing the Rebek Laboratory Homepage web source, students will be able to:

1) classify various self-assembled host-guest systems by the number of molecular components forming the assembly

2) identify the number and position of the hydrogen bonds that are responsible for the assembly of each host

3) identify the functional groups on the components of the host systems that are responsible for hydrogen bonding

4) state the experimentally determined percent volume of space generally occupied by guests that are encapsulated in these host systems

 

Subdiscipline: 
Implementation Notes: 

I have yet to use this website in my teaching but I hope that it may be a resource in expanding our curriculum in supramolecular chemistry.

Time Required: 
depends on use
3 Jan 2019

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith, University of Michigan- Dearborn
Evaluation Methods: 

I did not assess this piece, except by participation in the discussion

Evaluation Results: 

I asked my students to write an open ended essay to answer the question (asked in that first day exercise): What is Inorganic Chemistry.

Interestingly, 2 of my 15 students drew a version of this Venn Diagram to accompany their essays.

Description: 

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.  As the discussion unfolded, I just sort of started spontaneously drawing a Venn Diagram on the board.  

I think Venn diagrams are an excellent logic tool, one that is too little applied these days for anything other than internet memes.  This is a nice little add-on activity to the first day.
 

Your Venn diagram will likely look different from mine.  You're right.

 

Learning Goals: 

The successful student should be able to:

  • identify the various sub-disciplines of inorganic chemistry.  
  • apply the rules of logic diagrams to construct overlapping fields of an Venn diagram.

 

Prerequisites: 
Corequisites: 
Equipment needs: 

colored chalk may be handy but not required.

Implementation Notes: 

I used this activity in conjuction with a first day activity LO (also published on VIPEr).

I shared a clean copy (this one) with the students after the class where we discussed this.

 

Time Required: 
10-15 minutes
15 Jun 2018
Evaluation Methods: 

I typically evaluate this activity through class participation although the answer key is posted after class to let the students evaluate their own understanding of concepts.  The students do know that they will be tested on the material within the activity and usually I have a density problem on the exam.

Evaluation Results: 

This activity is designed to give the students more freedom as they move from the first density calculation to the last set of calculations.  Within the last set of calculations, they encounter a hexagonal unit cell so that may require some additional intervention to get them to think about how to calculate the volume of a hexagonal unit cell.

Description: 

This activity is designed to relate solid-state structures to the density of materials and then provide a real world example where density is used to design a new method to explore nanotoxicity in human health.  Students can learn how to calculate the density of different materials (gold, cerium oxide, and zinc oxide) using basic principles of solid state chemistry and then compare it to the centrifugation method that was developed to evaluate nanoparticle dose rate and agglomeration in solution.

 

Learning Goals: 

A student should be able to calculate a unit cell volume from structural information, determine the mass of one unit cell, and combine these two parameters to calculate the density for both cubic and hexagonal structures.  In addition, students will have an opportunity to read a scientific article and summarize the major findings, place data in a table, and explain the similarities and differences between the densities calculated in the activity and the experimental values that are reported in the literature.

Corequisites: 
Course Level: 
Equipment needs: 

None

Prerequisites: 
Implementation Notes: 

I have used this activity in our first semester inorganic chemistry course when we cover solid-state materials.  One thing to note is that I do use 2-D projections to describe structures and we cover that in a previous activity.  You could remove 2-D projections from this activity if it is not something that you previously covered.  

 

Time Required: 
This activity usually takes about 40 to 45 minutes.
13 Jun 2018

The Preparation and Characterization of Nanoparticles

Submitted by Kyle Grice, DePaul University
Evaluation Methods: 

Students are evaluated on their participation in lab, lab safety, lab notebook pages, and a lab report turned in a week after the last day of the experiment. 

Evaluation Results: 

This lab was first run in spring of 2016, and again in spring of 2017 and 2018 (a different instructor carried out the lab in 2018). 

In general, students do well on the lab report and seem to enjoy the experiment.They often need guidance when interpreting the Analytical Chemistry article and selecting the correct equations. Discussing their values with them in office hours ("does that make sense?") helps them understand their calculations. 

A sample lab report that scored above 90% is included in the faculty-only files. 

Description: 

This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever! 

We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab. 

While it was made for an upper-division course, I think It could be adapted and implemented at many levels, including gen chem. I do not spend much time on nano in the lecture (none in fact), so this lab was made to have students learn a bit about nanochemistry somewhere in inorganic chemistry. We have one 10-week quarter of inorganic lecture and lab, offered every spring quarter.

This lab takes approximately 2-3 hours if students are well prepared and using their time well, but is usually spread over 2 days. Students are concurrently doing experiments for another lab or two because we have a lab schedule that overlaps multiple labs, and can do these during one day or across two days. The lab space is an organic chemistry laboratory, so we have access to the usual lab synthetic equipment

Students in thelaboratory write lab reports,which are the due the week after the last day of the lab experiment. In the lab report they use their UV-Vis data to calculate information about the AuNP. 

The lab has been posted, as well two photos from students' ferrofluids (these were posted with permission on our departmental blog). A rubric has been posted as a faculty-only file. I have also included a student submission that received over 90% on the lab with their identifying information removed. Students write and introduction and need to cite journal articles in their report, so they are expected to do reading on nanochemistry topics outside of the lab period as they write their reports. 

I am sure the lab can be improved, this was what i came up with the materials and time I had. I plan on continuing to revise and edit it as time goes on. Any suggestions are very welcome! 

Prerequisites: 
Corequisites: 
Learning Goals: 

A student should be able to perform a chemical laboratory experiment safely and follow proper lab notebook protocol.

A student should be able to determine the average size of AuNPs from spectroscopic data and primary literature.

A student should determine atomic and nano-scale information from physical properties.

A student should be able to construct a lab report in the style of an ACS article (Students in my lab wrote lab reports for each experiment). 

Equipment needs: 

For this experiment, you  need

The chemical materials - HAuCl4, trisodium citrate, 

Heating/stirring plates

Glassware

UV-Vis spectrometer (mainly Vis)

A laser pointer

Strong magnets (the stronger and larger the better)

Implementation Notes: 

The syntheses are relatively straightforward, although we've had some problems getting "spikes" for the ferrofluid. Anecdotally, adding the reagents and doing the steps faster tends to give better "spiking". Some students just see a blob moving around in response to the magnet, which was fine in terms of their report. 

The AuNP synthesis can also be done with an ultrasonicator or by addition of sodium borohydride, among other methods. We don't have them make a calibration curve of chloride addition, but that could be a possibility.  

I like having a pre-made solution of a red oroganic dye to shine the laser pointer through to compare versus the laser shining through the AuNP solution. 

One year, the AuNP synthesis was going very slow. We realized it was because the Au(III) was diluted in acid, so it was protonating the citrate. Boiling for a while before adding the citrate solution helped fix this problem.

KAuCl3 is also a good source of Au(III) for this lab. 

Time Required: 
2 hours

Pages

Subscribe to RSS - Nanochemistry