Nanochemistry

15 Jun 2018
Evaluation Methods: 

I typically evaluate this activity through class participation although the answer key is posted after class to let the students evaluate their own understanding of concepts.  The students do know that they will be tested on the material within the activity and usually I have a density problem on the exam.

Evaluation Results: 

This activity is designed to give the students more freedom as they move from the first density calculation to the last set of calculations.  Within the last set of calculations, they encounter a hexagonal unit cell so that may require some additional intervention to get them to think about how to calculate the volume of a hexagonal unit cell.

Description: 

This activity is designed to relate solid-state structures to the density of materials and then provide a real world example where density is used to design a new method to explore nanotoxicity in human health.  Students can learn how to calculate the density of different materials (gold, cerium oxide, and zinc oxide) using basic principles of solid state chemistry and then compare it to the centrifugation method that was developed to evaluate nanoparticle dose rate and agglomeration in solution.

 

Learning Goals: 

A student should be able to calculate a unit cell volume from structural information, determine the mass of one unit cell, and combine these two parameters to calculate the density for both cubic and hexagonal structures.  In addition, students will have an opportunity to read a scientific article and summarize the major findings, place data in a table, and explain the similarities and differences between the densities calculated in the activity and the experimental values that are reported in the literature.

Corequisites: 
Course Level: 
Equipment needs: 

None

Prerequisites: 
Implementation Notes: 

I have used this activity in our first semester inorganic chemistry course when we cover solid-state materials.  One thing to note is that I do use 2-D projections to describe structures and we cover that in a previous activity.  You could remove 2-D projections from this activity if it is not something that you previously covered.  

 

Time Required: 
This activity usually takes about 40 to 45 minutes.
13 Jun 2018

The Preparation and Characterization of Nanoparticles

Submitted by Kyle Grice, DePaul University
Evaluation Methods: 

Students are evaluated on their participation in lab, lab safety, lab notebook pages, and a lab report turned in a week after the last day of the experiment. 

Evaluation Results: 

This lab was first run in spring of 2016, and again in spring of 2017 and 2018 (a different instructor carried out the lab in 2018). 

In general, students do well on the lab report and seem to enjoy the experiment.They often need guidance when interpreting the Analytical Chemistry article and selecting the correct equations. Discussing their values with them in office hours ("does that make sense?") helps them understand their calculations. 

A sample lab report that scored above 90% is included in the faculty-only files. 

Description: 

This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever! 

We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab. 

While it was made for an upper-division course, I think It could be adapted and implemented at many levels, including gen chem. I do not spend much time on nano in the lecture (none in fact), so this lab was made to have students learn a bit about nanochemistry somewhere in inorganic chemistry. We have one 10-week quarter of inorganic lecture and lab, offered every spring quarter.

This lab takes approximately 2-3 hours if students are well prepared and using their time well, but is usually spread over 2 days. Students are concurrently doing experiments for another lab or two because we have a lab schedule that overlaps multiple labs, and can do these during one day or across two days. The lab space is an organic chemistry laboratory, so we have access to the usual lab synthetic equipment

Students in thelaboratory write lab reports,which are the due the week after the last day of the lab experiment. In the lab report they use their UV-Vis data to calculate information about the AuNP. 

The lab has been posted, as well two photos from students' ferrofluids (these were posted with permission on our departmental blog). A rubric has been posted as a faculty-only file. I have also included a student submission that received over 90% on the lab with their identifying information removed. Students write and introduction and need to cite journal articles in their report, so they are expected to do reading on nanochemistry topics outside of the lab period as they write their reports. 

I am sure the lab can be improved, this was what i came up with the materials and time I had. I plan on continuing to revise and edit it as time goes on. Any suggestions are very welcome! 

Prerequisites: 
Corequisites: 
Learning Goals: 

A student should be able to perform a chemical laboratory experiment safely and follow proper lab notebook protocol.

A student should be able to determine the average size of AuNPs from spectroscopic data and primary literature.

A student should determine atomic and nano-scale information from physical properties.

A student should be able to construct a lab report in the style of an ACS article (Students in my lab wrote lab reports for each experiment). 

Equipment needs: 

For this experiment, you  need

The chemical materials - HAuCl4, trisodium citrate, 

Heating/stirring plates

Glassware

UV-Vis spectrometer (mainly Vis)

A laser pointer

Strong magnets (the stronger and larger the better)

Implementation Notes: 

The syntheses are relatively straightforward, although we've had some problems getting "spikes" for the ferrofluid. Anecdotally, adding the reagents and doing the steps faster tends to give better "spiking". Some students just see a blob moving around in response to the magnet, which was fine in terms of their report. 

The AuNP synthesis can also be done with an ultrasonicator or by addition of sodium borohydride, among other methods. We don't have them make a calibration curve of chloride addition, but that could be a possibility.  

I like having a pre-made solution of a red oroganic dye to shine the laser pointer through to compare versus the laser shining through the AuNP solution. 

One year, the AuNP synthesis was going very slow. We realized it was because the Au(III) was diluted in acid, so it was protonating the citrate. Boiling for a while before adding the citrate solution helped fix this problem.

KAuCl3 is also a good source of Au(III) for this lab. 

Time Required: 
2 hours
3 Jun 2017
Evaluation Methods: 

Evaluation methods could include grading as an in-class worksheet, trading with a partner for peer grading or turned in as an out-of-class graded homework assignment.

Evaluation Results: 

Currently, this activity has not been tested in a classroom.  Please post how your students did!

Description: 

This in-class activity is designed to assist students with the visualization of solid-state close-packed structures, using metal-sulfide nanocrystalline materials as a an example system.  Students will be asked to visualize and describe both hexagonal closest packed (hcp) and cubic closest packed (ccp) structure types, and isolate the tetrahedral and octahedral holes within each structure type.  Lasty, students will be asked to compare and contrast four metal-sulfide unit cells discussed in the paper below.

 

Powell, A.E., Hodges J.M., Schaak, R.E. Preserving Both Anion and Cation Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of a Metastable Wurtzite-Type CoS and MnSJ. Am. Chem. Soc. 2016, 138, 471-474.

http://pubs.acs.org/doi/abs/10.1021/jacs.5b10624

Learning Goals: 

In answering these questions, a student will…

  •  ...develop stronger visualaztion skills for extended, solid state materials;
  •  ...compare the packing sequence of close packed structures;
  •  ...locate tetrahedral and octahedral holes in close packed systems;
  •  ...count the number of tetrahedral / octahedral holes relative to the lattice ions; and
  •  …determine the number of atoms in a unit cell.
Equipment needs: 

The use of software - such as the demo version of CrystalMaker (http://www.crystalmaker.co.uk) or StudioViewer (Esko - app stores) - will be really helpful. StudioViewer can be run on cell phones, tablets, or MacOS devises. CrystalMaker is available for both Mac and PC. 

Instructions on using Studio Viewer to visualize structures on mobile devices are available in the learning object, Visualizing solid state structures using CrystalMaker generated COLLADA files.

 

Corequisites: 
Prerequisites: 
Implementation Notes: 

This learning object was developed at the 2017 MARM IONiC workshop on VIPEr and Literature Discussions. It has not yet been implemented.

This could be assigned for homework, but would likely work better in class with guidance. 

Time Required: 
This will probably take 50 minutes depending on how much work with models you do.
3 Jun 2017

An ion exchange method to produce metastable wurtzite metal sulfide nanocrystals

Submitted by Janet Schrenk, University of Massachusetts Lowell
Evaluation Methods: 

Evaluation methods are at the discretion of the instructor. For example, you may ask students to provide written answers to the questions, evaluate whether they participated in class discussion, or ask students to present their answers to specific questions to the class.

Description: 

In this literature discussion, students use a paper from the literature to explore the synthesis, structure, characterization (powder XRD, EDS and TEM) and energetics associated with the production of a metastable wurtzite CoS phase. Students also are asked define key terms and acronyms used in the paper; identify the goal of the experiments and determine if the authors met their goal. They examine the fundamental concepts around the key crystal structures available.  

 

Preserving Both Anion and Cation Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of a Metastable Wurtzite-Type CoS and MnS

Powell, A.E., Hodges J.M., Schaak, R.E. J. Am. Chem. Soc. 2016, 138, 471-474.

http://pubs.acs.org/doi/abs/10.1021/jacs.5b10624

 

There is an in class activitiy specifically written for this paper. 

Corequisites: 
Prerequisites: 
Learning Goals: 

In answering these questions, a student will be able to…

  • define important scientific terms and acronyms associated with the paper;

  • describe the rocksalt, NiAs, wurtzite, and zinc blende in terms of anion packing and cation coordination;

  • differentiate between the structure types described in the paper;

  • explain the difference between thermodynamically stable and metastable phases and relate it to a free energy diagram; and

  • describe the structural and composition information obtained from EDS, powder XRD, and TEM experiments.

Implementation Notes: 

This learning object was created at the 2017 IONiC Workshop on VIPEr and Literature Discussion. It has not yet been used in class.

Time Required: 
50 minutes
3 Jun 2017

Quantum Dot Growth Mechanisms

Submitted by Chi Nguyen, United States Military Academy
Evaluation Methods: 

The question document attempted by students in preparation for the literature discussion will be due prior to the in-class discussion. In particular, students' performance on the particle-in-a-box question will be evaluated to assess retention from the previously covered course material. The next exam following the discussion will contain specific question(s) (data/figure analysis) addressing these topics. Students' performance difference between the two will be evaluated. The extent to which students improve their post-discussion understanding of the concepts will direct future implementation.

Evaluation Results: 

To be determined. This is a newly proposed literature discussion.

Description: 

This literature article covers a range of topics introduced in a sophomore level course (confinement/particle-in-a-box, spectroscopy, kinetics, mechanism) and would serve as a an end-of-course integrated activity, or as a review activity in an upper level course. The authors of the article employ UV-vis absorption spectroscopy of CdSe quantum dots as a tool to probe the growth mechanism of the nanoparticles, contrasting two pathways.

 

Reference:  DOI 10.1021/ja3079576 J. Am. Chem. Soc. 2012, 134, 17298-17305

 
Corequisites: 
Prerequisites: 
Learning Goals: 

Apply the particle in a box model to interpret absorbance spectra with respect to nanoparticle size.

 

Analyze the step-growth and living chain-growth mechanisms proposed in this paper.

 

Evaluate the kinetics as it applies to the step-addition.

 

Recognize and apply multiple scientific concepts in an integrative manner.
Implementation Notes: 

Sophomore level implementation:  Recommend focusing on select portions (e.g. Figures 1b, 2, 5 with corresponding text) of the paper rather than having students read the entire document.  The learning objects focus on select topics, such as particle-in-a-box, reaction mechanism, and kinetics in conjunction with absorbance spectroscopy.  This would be a good literature discussion resource for an end-of-course integrative experience that encompasses multiple topics from general chemistry and inorganic chemistry.  

 

Advance level implementation:  For an upper division course, incorporate the paper in its entirety early in the course as an assessment on students’ ability to integrate multiple concepts that they should have learned in general chemistry, organic chemistry, and physical chemistry.  To enhance the experience, accompanying the literature discussion on this paper with a laboratory experience by repeating the experimental and characterization procedures presented in the paper, and having students' compare their results with published results.  This also serves to enhance students’ scientific literacy by critically assessing the quality of the paper.

 

Excerpts of the paper and questions can be used on a graded event, or as lesson preparation for in class discussion.

 
Time Required: 
In-class discussion takes approximately 50 minutes with students having already read the paper and submitted their responses to the questions.
27 Mar 2017

Nanomaterials for Carbon Dioxide Reduction

Submitted by Anne Bentley, Lewis & Clark College
Evaluation Methods: 

The problems presented here represented half the points on the final exam – I have included point totals to give an idea of the weight assigned to each problem.

Evaluation Results: 

Twelve students were enrolled in my course in the fall 2016. The average overall score for these problems was 78%.

For problem 1b, I calculated the oxidation numbers using the familiar general chemistry method of assigning oxygen as –2 and hydrogen as +1. Students recently coming through organic may have some other way to do it, and you may need to provide directions for your students about your preferred method.  I think I could have worded part (c) better to try to emphasize the redox processes involved. I wanted them to think of combustion, but I think they needed to be specifically prompted, such as "Give an example of the combustion processes that generate CO2 and trace the oxidation state of carbon through the reaction." Overall my students scored 86% on problem 1.

The second problem (about another method that could be used to measure d-spacing) was fairly hit or miss.  Five students got full credit, six students got 3 points, and one got zero. Eleven out of twelve did answer part (a) correctly.  I realized as I made this LO that the article says the carbon-based material doesn’t diffract X-rays, but doesn’t actually directly explain whether or not the Cu nanoparticles diffracted X-rays, so you may need to adjust the question to be technically accurate.

Question three (re: surfactants in nanoparticle synthesis) referred back to knowledge from earlier in the course. The overall score was 61%.

Question 4 (define and describe electrodes) was fairly straightforward, and students scored 85%.

Question 5 caused some confusion, as some students missed that I was looking for “carbon-containing” products only. I didn’t count off for that mistake, but it made the problem harder for students who included hydrogen in each box.  Overall, students did very well on this problem (89% correct).

Question 6 – again, not too much trouble here (84% correct).

Question 7 – I was surprised that students didn’t do better on this question, as I thought that water reduction was mentioned often in the article.  Only three (of 12) students scored 5 points on this problem, and the average score was 53%.  This was probably my favorite question, as it foreshadows electrochemistry topics I cover in my inorganic course.

Description: 

This literature discussion is based on an article describing the use of copper nanoparticles on an N-doped textured graphene material to carry out the highly selective reduction of CO2 to ethanol (Yang Song et al., “High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle / N-Doped Graphene Electrode” ChemistrySelect 2016, 1, 6055-6061.  DOI: 10.1002/slct.201601169). The article provides a good introduction to the concepts of electrochemical reduction, selectivity and recycling of fossil fuels. The literature discussion assignment shared here was used as half of the final exam in a half-credit nanomaterials chemistry course, but could be adapted for use as a take-home or in-class assignment.

Corequisites: 
Course Level: 
Learning Goals: 

After reading this paper and working through the problems, a student will be able to:

  • assign oxidation states to carbon and trace the oxidation and reduction of carbon through fossil fuel combustion and CO2 conversion
  • describe the role of control experiments in studying the CO2 conversion presented in the article
  • define the word “selective” in the context of this research
  • use the proposed mechanism to explain why the electrode studied produces ethanol in such a high proportion
  • identify the primary reaction competing with CO2 reduction for available electrons
Implementation Notes: 

These questions comprised half of the final exam for my half-credit nanomaterials chemistry course in the fall of 2016.  I gave the article to the students one week ahead of time. They were encouraged to read the article, make any small notes they liked, and meet with me in office hours with questions. At the final exam they were allowed to use their copy of the article, but they were also required to hand in their copy with their exam so that I could make sure they hadn't written lots of extraneous information on the exam copy.

The nanomaterials course features near-weekly homework assignments centered around articles from the literature. Because I used this article at the end of the course, students were already familiar with nanomaterials synthesis and characterization techniques. Thus, some of the questions I asked relied on previous knowledge. 

Please feel free to adapt these questions and add some of your own. Leave comments describing any new questions you’ve added.

Time Required: 
one hour
23 Mar 2016

Nanomaterials Chemistry

Submitted by Anne Bentley, Lewis & Clark College

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.

Prerequisites: 
Corequisites: 
29 Jun 2015

Copper Oxide Crystal Growth

Submitted by Ellen Steinmiller, University of Dallas
Evaluation Methods: 

Student answers to the reading comprehension questions were collected at the beginning of class and graded out of 10 points.  An additional 15 points was based on on class participation during the discussion and answers to the in class questions. 

Evaluation Results: 

Overall, students did well on this paper.  During the group problems, students struggled the most with Miller indexes and drawing the layer diagrams of the Cu atoms.  In the future I would incorporate ICE models in the class discussion so that students can more clearly see the different crystal planes.  Students are often quite confused as to why copper oxide is a primitive cubic cell and I think see the models would help with the visualization that not all Cu atoms are created equally.

Description: 

Students in a 2nd year inorganic class read an article describing the effect of additives on the final morphology of copper oxide. (Siegfried, M.J., and Choi, K-S, “Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals”J. Am. Chem. Soc., 2006, 128 (32), pp 10356–10357.  dx.doi.org/10.1021/ja063574y). The authors describe a systematic method that exploits the preferential adsorption phenomenon to regulate crystals shapes by observing the shape transformation of pre-grown crystals over time (e.g cubic to rhobooctahedral to octahdral and back).  The authors start with seed crystals of specific morphology and then immerse the pre-grown crystals in a second solutions with additives to direct the crystal growth.    This strategy allowed them to develop a general scheme to determine the relative order of surface energies and form new crystal shapes containing planes that cannot be directly stabilized by preferential adsorption alone.  

Prerequisites: 
Corequisites: 
Learning Goals: 

After reading and discussing this paper, students will be able to:

-          Differentiate between notations describing planes, directions, and families of planes

-          Describe atomic surface terminations of different crystal faces of the same unit cell

-          Describe the effect of common additives on synthesis of crystals

-          Determine d-spacings of planes from XRD data

-          Determine lattice parameters from XRD data 

Implementation Notes: 

I used this article in the Spring of 2014 in a class of 9 (1 freshmen, 1 sophomore, 5 juniors, 2 seniors) as our conclusion of our discussion of solid state chemistry.   Students had a background in electrochemistry, crystal structures and x-ray diffraction before reading this paper.  Students were required to submit the first set of questions when they came to class and then they worked on the second set of questions in small groups.  During the class discussion, we reviewed electrochemistry, in particular the reaction of electrodeposition of Cu2+ to Cu2O and revisited Pourbaix diagrams briefly to discuss stability of different metal oxide species.  We also discussed preferential adsorption and how this impacts crystal growth.  For a good paper on preferential absorption, see Matthew J. Siegfried and Kyoung-Shin Choi, “Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution,” Adv. Mater. 2004, 16, 1743-1746. (dx.doi.org/ 10.1002/adma.200400177). Schematic 1 is particularly helpful and I used it to develop the concept preferential adsorption and the relative enrgies of planes. 

Time Required: 
50 minutes
29 Jun 2015

Introduction to Miller Indices

Submitted by Vanessa McCaffrey, Albion College
Evaluation Methods: 

I evaluated the students' understanding of and engagement in the material by two different methods. 

First, students received a participation grade. They were were required to ask questions on at least one of the pages and answer one of the games on the "Question" page. 

I evaluated their factual knowledge during literature discussions later in the semester.

There were no homework or exam questions that were specific to this material. However, this will change the next time and there will be some follow-up homework. I will post this HW assignment as a separate learning object when it is completed. 

 

Evaluation Results: 

Overall, the activity was a success. In the course evaluations at the end of the semester, students reported liking the website activities (I used several from the University of Cambridge DoITPoMS Teaching and Learning Packages throughout the semester) better than reading assignments that came from the book. They reported liking the animations and the hands-on learning.

In a later literature discussion (see related LO), students were able to answer questions about the peaks in the XRD and what the different numbers meant. 

Description: 

Towards the end of the semester, when we were starting to read more of the primary literature, I realized that the Miller Indices were present in most of the papers that I wanted to discuss. However, I couldn't find any good resources in textbooks that would help to explain what these were. I found this online resource through the University of Cambridge that is engaging, interactive and concise.

Corequisites: 
Prerequisites: 
Course Level: 
Learning Goals: 

The tutorial website does an amazing goal of outling the specific learning goals here.

In brief, the learning goals for student are:

  • Gain an understanding of Miller Indices
  • Given a set of numbers, generate the unit cell plane
  • Determine the set of Miller Indices given a plane in a unit cell
  • Describe how Miller Indices can be used in the "real world" through literature examples
Implementation Notes: 

I sent the website out to the students about a week before class and asked them to read the first eight sections (through "Bracket Conventions") and also the section on "Practical Uses". I told them that we would discuss the material in class and then go through some of the Games in the "Questions" section. I intentionally left out the section that dealt with the Weiss Zone Law. 

There was no formal homework assignment associated with the assignment.

During class, I pulled the website up and we went through each of the sections. Once I felt that everyone had had a chance to ask any questions on each of the pages, I then pulled up the "Questions" and we answered the drag-and-drop questions as a class.

I called on students individually and had them answer questions in front of the class (we had been doing this all semester and there were only eight students). I answered the first questions and got several of them wrong, so they felt much more comfortable making mistakes.

When doing this again, I would use the entire tutorial, and not just selected sections.

Time Required: 
30 minutes
10 Jun 2015
Description: 

 

The resources on this website will help students learn concepts in materials chemistry, solid state chemistry, and nanoscience. The website provides links to

  • a video lab manual,
  • a cineplex of demonstrations,
  • kits that can be used for extended structures, and
  • interactive structures of solid state materials, Au nanoparticles and forms of carbon.

There videos and resources have applications across the chemistry curriculum. Many materials are inorganic. This is a great resource for people looking for ways to incorporate the new CPT guideline to discuss macromolecular, supramolecular, mesoscale and nanoscale systems within the framework of their existing curriculum.

Prerequisites: 
Corequisites: 

Pages

Subscribe to RSS - Nanochemistry