Coordination Chemistry

31 Jan 2019
Description: 

This set of slides was made for my Organometallics class based on questions about bridging hydrides and specifically the chromium molecule. I decided to make these slides to answer the questions, and do a DFT calc to show the MO's involved in bonding of the hydride. 

 

Corequisites: 
Learning Goals: 

A student will be able to explain bridging hydride bonding

A student will be able to perform electron counting on a chromium comples with a bridging hydride

A student will be able to interepret calculated DFT molecular orbitals. 

Time Required: 
15 min
Evaluation
Evaluation Methods: 

This was provided as supplementary material outside of lecture. 

28 Jan 2019
Evaluation Methods: 

Concepts covered during literature discussions will be included among exam materials.

Evaluation Results: 

N/A

Description: 

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer.  It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409. It includes a Reading Guide that will direct students to specific sections of the paper that were emphasized in the discussion.  This article reports a systematic study of a series of homogeneous catalysts for the conversion of glycerol to lactic acid.

Course Level: 
Corequisites: 
Learning Goals: 

After reading and discussing this article, a student should be able to…

-       Apply the CBC electron-counting method to homogeneous catalysts.

-       Understand the effect of metal and/or metal oxidation state on catalyst activity.

-       Understand the effect of ligand and/or ligand charge on catalyst activity.

-       Understand the differences between microwave and conventional heating.

Implementation Notes: 

I am planning on assigning this LO as a graded in-class group discussion. Students will be given a copy of the article, reading guide, and discussion questions one week in advance. On the day of the discussion, students will be assigned in groups of 2-3. They will then have one lecture period to answer the questions in writing as a group. A portion of their grade (20%) is dedicated to literature discussions (4-6 over the course of the semester). The grading rubric involves 3 possible ratings for each question/answer: “excellent”, “acceptable”, or “needs work”. [This article is among the free-access ACS Editors’ Choice.]

Time Required: 
1 lecture period, with materials given one week in advance
28 Jan 2019
Evaluation Methods: 

A portion of their grade (20%) is dedicated to literature discussions (4-6 over the course of the semester). The grading rubric involves 3 possible ratings for each question/answer: “excellent”, “acceptable”, or “needs work”.

Concepts covered during literature discussions will be included among exam materials.

Evaluation Results: 

N/A

Description: 

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Christopher Lasterand Patrick Wilson.  It is based on the article “Deca-Arylsamarocene: An Unusually Inert Sm(II) Sandwich Complex” by Niels J. C. van Velzen and Sjoerd Harder in Organometallics 201837, 2263−2271. It includes a Reading Guide that will direct students to specific sections of the paper that were emphasized in the discussion.  This article presents a study of the reactivity of bulky CpAr-Et/iPrSm complexes that is contrasted to the more well-known Cp*2Sm.

Course Level: 
Corequisites: 
Learning Goals: 

After reading and discussing this article, a student should be able to…

-      Be more familiar with the chemistry of sandwich samarocene complexes.

-      Understand how bulky ligands affect structure and reactivity in a sandwich complex.

-      Apply the CBC method to identify ligand functions and metal valence number/ligand bond number.

-       Understand how XRD bond distances can help determine a ligand charge.

Implementation Notes: 

I am planning on assigning this LO as a graded in-class group discussion. Students will be given a copy of the article, reading guide, and discussion questions one week in advance. On the day of the discussion, students will be assigned in groups of 2-3. They will then have one lecture period to answer the questions in writing as a group.  [This article is among the free-access ACS Editors’ Choice.]

Time Required: 
1 lecture period, with materials given one week in advance
16 Jan 2019
Evaluation Methods: 

Concepts covered during literature discussions will be included among exam materials.

Evaluation Results: 

N/A

Description: 

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Jana Forster and Kristofer Reiser.  It is based on the article “Mechanism of the Platinum(II)-Catalyzed Hydroamination of 4-Pentenylamines” by Christopher F. Bender, Timothy J. Brown, and Ross A. Widenhoefer in Organometallics 2016 35 (2), 113-125. It includes a Reading Guide that will direct students to specific sections of the paper that were emphasized in the discussion.  This article presents a mechanistic study of hydroamination reactions catalyzed by a late transition metal complex.

Course Level: 
Corequisites: 
Learning Goals: 

After reading and discussing this article, a student should be able to…

-  Apply the CBC electron-counting method.

-  Understand how 31P {1H} NMR can help differentiate intermediates.

-  Use information provided by Eyring plots.

-  Understand how a catalyst resting state and turnover-limiting step can be identified.

-  Understand the role of kinetics in mechanistic investigations.

-   Appreciate how proposed reaction mechanisms can be evaluated.

 

Implementation Notes: 

I am planning on assigning this LO as a graded in-class group discussion. Students will be given a copy of the article, reading guide, and discussion questions one week in advance. On the day of the discussion, students will be assigned in groups of 2-3. They will then have one lecture period to answer the questions in writing as a group. A portion of their grade (20%) is dedicated to literature discussions (4-6 over the course of the semester). The grading rubric involves 3 possible ratings for each question/answer: “excellent”, “acceptable”, or “needs work”. [This article is among the free-access ACS Editors’ Choice.]

Time Required: 
1 lecture period, with discussion materials given one week in advance
3 Jan 2019

Venn Diagram activity- What is inorganic Chemistry?

Submitted by Sheila Smith, University of Michigan- Dearborn
Evaluation Methods: 

I did not assess this piece, except by participation in the discussion

Evaluation Results: 

I asked my students to write an open ended essay to answer the question (asked in that first day exercise): What is Inorganic Chemistry.

Interestingly, 2 of my 15 students drew a version of this Venn Diagram to accompany their essays.

Description: 

This Learning Object came to being sort of (In-)organically on the first day of my sophomore level intro to inorganic course. As I always do, I started the course with the IC Top 10 First Day Activity. (https://www.ionicviper.org/classactivity/ic-top-10-first-day-activity).  One of the pieces of that In class activity asks students- novices at Inorganic Chemistry- to sort the articles from the Most Read Articles from Inorganic Chemistry into bins of the various subdisciplines of Inorganic Chemistry.  As the discussion unfolded, I just sort of started spontaneously drawing a Venn Diagram on the board.  

I think Venn diagrams are an excellent logic tool, one that is too little applied these days for anything other than internet memes.  This is a nice little add-on activity to the first day.
 

Your Venn diagram will likely look different from mine.  You're right.

 

Learning Goals: 

The successful student should be able to:

  • identify the various sub-disciplines of inorganic chemistry.  
  • apply the rules of logic diagrams to construct overlapping fields of an Venn diagram.

 

Prerequisites: 
Corequisites: 
Equipment needs: 

colored chalk may be handy but not required.

Implementation Notes: 

I used this activity in conjuction with a first day activity LO (also published on VIPEr).

I shared a clean copy (this one) with the students after the class where we discussed this.

 

Time Required: 
10-15 minutes
12 Dec 2018

Foundations Inorganic Chemistry for New Faculty

Submitted by Chip Nataro, Lafayette College

What is a foundations inorganic course? Here is a great description

https://pubs.acs.org/doi/abs/10.1021/ed500624t

 

Prerequisites: 
Corequisites: 
Course Level: 
8 Nov 2018

5-ish Slides about Enemark-Feltham Notation

Submitted by Kyle Grice, DePaul University
Description: 

This is a basic introduction to Enemark-Feltham that can be used in conjunction with any literature that has Iron nitrosyls in it. I made this as a follow up to the work that came ouf of the 2018 VIPEr workshop in UM-Dearborn. 

Corequisites: 
Learning Goals: 

A student will be able to detemine the Enemark-Feltham label for a simple iron nitrosyl

A student will be able to describe bonding differences between NO+, NO, and NO- ligands. 

Implementation Notes: 

I haven't used this yet, but It can be a quick lecture module or online module to help students understand Enemark-Feltham before analyzing a paper on iron nitrosyls. 

Time Required: 
10 min
Evaluation
Evaluation Methods: 

I have not used this yet. 

Evaluation Results: 

I have not used this yet. 

6 Jul 2018

Getting to Know the MetalPDB

Submitted by Anthony L. Fernandez, Merrimack College
Evaluation Methods: 

I reviewed student answers to this assignment and evaluated their contributions to the discussion that took place. I also tried to keep track of how much they used information obtained from this site during their literature presentations.

 
Evaluation Results: 

This assignment is quite straightforward and the 6 of 8 students who completed the assignment had little trouble coming up with correct answers for all of the questions.

 

At the end of the semester, each student had to give two presentations on bioinorganic topics. They were expected to discuss the metal coordination environment and how "normal" it was, as well as the possibility of substituting another metal into the coordination sphere. One student used information from the MetalPDB in both of her presentations, three students used information in one of their presentations, and four students did not include information from the site in either presentation.

 

Description: 

When teaching my advanced bioinorganic chemistry course, I extensively incorporate structures from Protein Data Bank in both my assignments and classroom discussions and mini-lectures. I also have students access structures both in and out of class as they complete assignments.

 

I expect my students to use this site to obtain information for their assignments and presentations. This activity is a self-paced introduction to the site that my students complete outside of class. This activity has students use the site to obtain information about metal coordination environments, the common geometries adopted by metals in biological environments, and the common ligands that are used to bind metals.

Learning Goals: 

After completing this exercise, students should be able to:

  • access the MetalPDB site,

  • obtain statistics pertaining to the number of metal-containing structures in the PDB,

  • determine the most common geometry observed for a particular metal in a biological structure,

  • identify the most common ligands attached to the metal when bound in a biological macromolecule, and

  • find information such as the function of, the coordination geometry of, and the coordinated ligands bound to a metal ion in a specific structure from the PDB.

Equipment needs: 

Students need access to the internet and a web browser that is capable of running JavaScript and JSmol. This site is accessible on devices running iOS, but the layout of the site works better on a laptop screen.

Prerequisites: 
Corequisites: 
Implementation Notes: 

I used the MetalPDB site for the first time in my Bioinorganic Chemistry course during the Spring 2018 semester. I routinely use the PDB to access structures of metal-containing biological macromolecules in both my advanced and foundation-level courses, but it can be very hard to find structures wth specific metals. I used this site to find structures that I could use as examples in class.

 

I also have students use the site to get background information about metal geometry and common ligands for their assignments and presentations. I ask them to complete this activity outside of class. I usually distribute this as a Google Doc to my students (through Google Classroom) so that I have access to all of their responses.

 

For several of the questions/groups of questions, I assign individual members of the class specific geometries (question #5), metals (questions #6-9), or PDB structures (questions #11-13) and we pool their answers in class. We then spend about 30-45 minutes in class discussing the results and search for commonalities and connections to other structures that we have already discussed in class.

 
Time Required: 
1-2 hours (outside of class by student); 30-45 minutes in class (including discussion of related topics)
23 Jun 2018
Evaluation Methods: 

Students answer several questions prior to the in class discussion. These answers can be collected to assess their initial understanding of the paper prior to the class discussion. Assessment of the in class discussion could be based on students’ active participation and/or their written responses to the in class questions.

Evaluation Results: 

This Learning Object was developed as part of the 2018 VIPEr Summer Workshop and has not yet been used in any of our classes, but we will update this section after implementation.

Description: 

This is a literature discussion based on a 2018 Inorganic Chemistry paper from the Lehnert group titled “Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases“(DOI: 10.1021/acs.inorgchem.7b02333). The literature discussion points students to which sections of the paper to read, includes questions for students to complete before coming to class, and in class discussion questions. Several of the questions address content that would be appropriate to discuss in a bioinorganic course. Coordination chemistry and mechanism discussion questions are also included.

 

Corequisites: 
Prerequisites: 
Learning Goals: 

A successful student will be able to:

  • Evaluate structures of metal complexes to identify coordination number, geometry (reasonable suggestion), denticity of a coordinated ligand, and d-electrons in FeII/FeIII centers.

  • Describe the biological relevance of NO.

  • Identify the biological roles of flavodiiron nitric oxide reductases.

  • Identify the cofactors in flavodiiron nitric oxide reductase enzymes and describe their roles in converting NO to N2O.

  • Describe the importance of modeling the FNOR active site and investigating the mechanism of N2O formation through a computational investigation.

  • Explain the importance of studying model complexes in bioinorganic chemistry and analyze the similarities/differences between a model and active site.

  • Write a balanced half reaction for the conversion of NO to N2O and analyze a reaction in terms of bonds broken and bonds formed.

  • Interpret the reaction pathway for the formation of N2O by flavodiiron nitric oxide reductase and identify the reactants, intermediates, transition states, and products.

 

A successful advanced undergrad student will be able to:

  • Explain antiferromagnetic coupling.

  • Apply hard soft acid base theory to examine an intermediate state of the FNOR mechanism and apply the importance of the transition state to product formation of N2O.

  • Apply molecular orbitals of the NO species and determine donor/acceptor properties with the d-orbitals of the diiron center.

Implementation Notes: 

This paper is quite advanced and long, so faculty should direct students to which sections they should read prior to the class discussion. Information about which parts of the paper to read for the discussion are included on the handout. Questions #7 and #8 are more advanced, and may be included/excluded depending on the level of the course.

Time Required: 
In-Class Discussion 1-2 class periods depending on implementation.
23 Jun 2018
Evaluation Methods: 

 A key is provided for the discussion questions. The discussion questions can be collected and graded.

Description: 

The activity is designed to be a literature discussion based on Nicolai Lehnert's Inorganic Chemistry paper, Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.  The discussion questions are designed for an advanced level inorganic course. 

 

Corequisites: 
Course Level: 
Learning Goals: 

Upon completion of this activity, students will be able to:

  1. Identify the overall research goal(s) of the paper.

  2. Define and identify non-innocent ligands.

  3. Identify how electron density on the metal center can impact ligand coordination.

  4. Draw molecular orbital diagrams for coordination compounds.

  5. Identify covalency by interpreting molecular orbital diagrams and data.

  6. Define and interpret Enemark-Feltham notation.

  7. Recognize spin multiplicity of the metal and ligand fragments in a complex and how it corresponds to the overall spin multiplicity.

  8. Identify possible electronic structures of {FeNO} complexes.

  9. Describe various characteristics to be considered in the selection of a good reductant.

  10. Explain how occupying bonding versus antibonding orbitals changes the reactivity of a system.

Implementation Notes: 

This is a very involved article with lots of great concepts. It will take a lot of time to read. We suggest giving this as a student group assignment. Give the students a copy of the article and discussion questions. Give them 1-2 weeks to read through the article and complete the discussion questions. Spend one or two 50 min. class periods going over the discussion questions. 

Note: This was developed during the 2018 VIPEr Workshop and has not been implemented, yet. Above instructions are an initial guide, any feedback is welcome and appreciated!

Time Required: 
50-90 min.

Pages

Subscribe to RSS - Coordination Chemistry