National ACS Award Winners 2022 LO Collection

Submitted by Shirley Lin / United States Naval Academy on Sat, 03/12/2022 - 07:01

This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below. 

Orca Computational Chemistry Tutorials (Neese)

Submitted by Amanda Reig / Ursinus College on Thu, 04/04/2024 - 13:53
Description

Frank Neese was honored with the 2024 ACS Award in Inorganic Chemistry for outstanding accomplishments in combining high-level theory with experiment to obtain insight into the properties and reactivities of transition-metal complexes and metalloenzymes. 

His major contributions to the field have been through the development and dissemination of his free computational modeling software program ORCA, which is used by thousands of researchers across the fields of inorganic and bioinorganic chemistry.

Europium-based Contrast Agents
Description

This learning object (LO) focuses on a recent JACS paper (J. Am. Chem. Soc. 2022, 144, 23053 -23060), which explores the chemistry of EuII-based contrast agents.

Sibrina Collins / College of Arts and Sciences at Lawrence Technological University Thu, 03/21/2024 - 15:34
New Members of the Class of [Fe(CN)x(CO)y] Compounds (Koch)
Description

This LO was written by the IONiC Leadership Council to celebrate Steve Koch as the recipient of the 2024 ACS Award for Distinguished Service in Advancement of Inorganic Chemistry. Steve has been a major supporter of the IONiC community since its inception. This LO is based on the article New Members of the Class of [Fe(CN)x(CO)y] Compounds. published in Inorganic Chemistry (DOI: 10.1021/ic015604y).

Barbara Reisner / James Madison University Mon, 03/11/2024 - 17:23
Incorporating hard-soft acid-base theory to create transition-metal and oxidation-state specific biological probes (Chang)
Description

This literature discussion was created on invitation as part of a broad collection of learning objects celebrating Spring 2024 ACS award winners conducting research in Inorganic Chemistry. This learning object is in celebration of Prof. Christopher J.

Marco Messina / University of Delaware Sun, 03/03/2024 - 09:13

Electron Transfer through a Photosynthetic Reaction Center

Submitted by Levi Ekanger / The College of New Jersey on Thu, 09/07/2023 - 16:23
Description

This is a computer-based activity intended for a bioinorganic chemistry course composed of upper-level undergraduate students. It is helpful for students to be familiar with concepts of electron transfer, including a surface-level introduction to Marcus theory and the inverted region, and photosynthetic charge separation before beginning this activity. However, this activity can easily be adapted to students with other levels of preparation in a bioinorganic course.

Inorganic Chemistry

Submitted by Daniel Ashley / Spelman College on Thu, 06/22/2023 - 16:48
Description

Rigorous treatment of the chemistry of inorganic compounds, including structure, properties, and reactions, and their interpretation in terms of quantum chemistry, and solid state chemistry; analysis with modern instrumentation.

Inorganic Chemistry I

Submitted by Cody Webb Jr / Hartwick College on Wed, 06/14/2023 - 01:57
Description

This course focuses on the chemistry of the elements, including electronic structure, bonding and
molecular structure, ionic solids, coordination compounds, the origins of the elements, and the descriptive
chemistry of the elements. Topics also include inorganic synthesis, materials science, industrial chemistry,
and an introduction to bioinorganic chemistry.

Inorganic Chemistry

Submitted by Jaime Murphy / Harding University on Mon, 06/12/2023 - 11:04
Description

CHEM 4310 is an in-depth review of modern inorganic chemistry. Topics will include symmetry, acids and bases, reduction-oxidation reactions, periodic trends, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and material chemistry. The course will meet for three hours of lecture and three hours of laboratory per week.