Inorganic Chemistry
Rigorous treatment of the chemistry of inorganic compounds, including structure, properties, and reactions, and their interpretation in terms of quantum chemistry, and solid state chemistry; analysis with modern instrumentation.
Rigorous treatment of the chemistry of inorganic compounds, including structure, properties, and reactions, and their interpretation in terms of quantum chemistry, and solid state chemistry; analysis with modern instrumentation.
This course focuses on the chemistry of the elements, including electronic structure, bonding and
molecular structure, ionic solids, coordination compounds, the origins of the elements, and the descriptive
chemistry of the elements. Topics also include inorganic synthesis, materials science, industrial chemistry,
and an introduction to bioinorganic chemistry.
CHEM 4310 is an in-depth review of modern inorganic chemistry. Topics will include symmetry, acids and bases, reduction-oxidation reactions, periodic trends, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and material chemistry. The course will meet for three hours of lecture and three hours of laboratory per week.
Materials Chemistry will explore many of the fundamental relationships between a material’s chemical structure and the subsequent interesting and useful properties that result. In order for advances in electronic, magnetic, optical, and other niche applications to be made, an understanding of the structure-property relationship in these materials is crucial. This course will emphasize inorganic systems, and topics will include descriptions of various modern inorganic solid-s
This course will explore many of the fundamental principles of inorganic chemistry, with significant emphasis on group theory, molecular orbital theory, angular overlap theory, coordination chemistry, organometallic chemistry, and bio-inorganic chemistry. Specific topics will vary, but will generally include coverage of atomic structure, simple bonding theory, donor-acceptor chemistry, the crystalline solid state, coordination compounds and isomerism, electronic and infrared spectroscopy applied to inorganic complexes, substitution mechanisms, and catalysis.
In Fall 2022, R. David Britt was awarded the ACS Alfred Bader Award in Bioinorganic Chemistry for pioneering pulse electron paramagnetic resonance (EPR) spectroscopy of the photosystem II oxygen-evolving complex, plus the advanced EPR spectroscopic characterization of numerous and varied key metalloenzymes and catalysts.
This collection of learning objects was created to celebrate the National ACS Award Winners 2023 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below.
CHEM 405 Advanced Inorganic Chemistry – 4 Credit Hours