Nanoscience

13 Jun 2018

The Preparation and Characterization of Nanoparticles

Submitted by Kyle Grice, DePaul University
Evaluation Methods: 

Students are evaluated on their participation in lab, lab safety, lab notebook pages, and a lab report turned in a week after the last day of the experiment. 

Evaluation Results: 

This lab was first run in spring of 2016, and again in spring of 2017 and 2018 (a different instructor carried out the lab in 2018). 

In general, students do well on the lab report and seem to enjoy the experiment.They often need guidance when interpreting the Analytical Chemistry article and selecting the correct equations. Discussing their values with them in office hours ("does that make sense?") helps them understand their calculations. 

A sample lab report that scored above 90% is included in the faculty-only files. 

Description: 

This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever! 

We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab. 

While it was made for an upper-division course, I think It could be adapted and implemented at many levels, including gen chem. I do not spend much time on nano in the lecture (none in fact), so this lab was made to have students learn a bit about nanochemistry somewhere in inorganic chemistry. We have one 10-week quarter of inorganic lecture and lab, offered every spring quarter.

This lab takes approximately 2-3 hours if students are well prepared and using their time well, but is usually spread over 2 days. Students are concurrently doing experiments for another lab or two because we have a lab schedule that overlaps multiple labs, and can do these during one day or across two days. The lab space is an organic chemistry laboratory, so we have access to the usual lab synthetic equipment

Students in thelaboratory write lab reports,which are the due the week after the last day of the lab experiment. In the lab report they use their UV-Vis data to calculate information about the AuNP. 

The lab has been posted, as well two photos from students' ferrofluids (these were posted with permission on our departmental blog). A rubric has been posted as a faculty-only file. I have also included a student submission that received over 90% on the lab with their identifying information removed. Students write and introduction and need to cite journal articles in their report, so they are expected to do reading on nanochemistry topics outside of the lab period as they write their reports. 

I am sure the lab can be improved, this was what i came up with the materials and time I had. I plan on continuing to revise and edit it as time goes on. Any suggestions are very welcome! 

Prerequisites: 
Corequisites: 
Learning Goals: 

A student should be able to perform a chemical laboratory experiment safely and follow proper lab notebook protocol.

A student should be able to determine the average size of AuNPs from spectroscopic data and primary literature.

A student should determine atomic and nano-scale information from physical properties.

A student should be able to construct a lab report in the style of an ACS article (Students in my lab wrote lab reports for each experiment). 

Equipment needs: 

For this experiment, you  need

The chemical materials - HAuCl4, trisodium citrate, 

Heating/stirring plates

Glassware

UV-Vis spectrometer (mainly Vis)

A laser pointer

Strong magnets (the stronger and larger the better)

Implementation Notes: 

The syntheses are relatively straightforward, although we've had some problems getting "spikes" for the ferrofluid. Anecdotally, adding the reagents and doing the steps faster tends to give better "spiking". Some students just see a blob moving around in response to the magnet, which was fine in terms of their report. 

The AuNP synthesis can also be done with an ultrasonicator or by addition of sodium borohydride, among other methods. We don't have them make a calibration curve of chloride addition, but that could be a possibility.  

I like having a pre-made solution of a red oroganic dye to shine the laser pointer through to compare versus the laser shining through the AuNP solution. 

One year, the AuNP synthesis was going very slow. We realized it was because the Au(III) was diluted in acid, so it was protonating the citrate. Boiling for a while before adding the citrate solution helped fix this problem.

KAuCl3 is also a good source of Au(III) for this lab. 

Time Required: 
2 hours
23 Mar 2016

Nanomaterials Chemistry

Submitted by Anne Bentley, Lewis & Clark College

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.

Prerequisites: 
Corequisites: 
29 Jun 2015

Copper Oxide Crystal Growth

Submitted by Ellen Steinmiller, University of Dallas
Evaluation Methods: 

Student answers to the reading comprehension questions were collected at the beginning of class and graded out of 10 points.  An additional 15 points was based on on class participation during the discussion and answers to the in class questions. 

Evaluation Results: 

Overall, students did well on this paper.  During the group problems, students struggled the most with Miller indexes and drawing the layer diagrams of the Cu atoms.  In the future I would incorporate ICE models in the class discussion so that students can more clearly see the different crystal planes.  Students are often quite confused as to why copper oxide is a primitive cubic cell and I think see the models would help with the visualization that not all Cu atoms are created equally.

Description: 

Students in a 2nd year inorganic class read an article describing the effect of additives on the final morphology of copper oxide. (Siegfried, M.J., and Choi, K-S, “Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals”J. Am. Chem. Soc., 2006, 128 (32), pp 10356–10357.  dx.doi.org/10.1021/ja063574y). The authors describe a systematic method that exploits the preferential adsorption phenomenon to regulate crystals shapes by observing the shape transformation of pre-grown crystals over time (e.g cubic to rhobooctahedral to octahdral and back).  The authors start with seed crystals of specific morphology and then immerse the pre-grown crystals in a second solutions with additives to direct the crystal growth.    This strategy allowed them to develop a general scheme to determine the relative order of surface energies and form new crystal shapes containing planes that cannot be directly stabilized by preferential adsorption alone.  

Prerequisites: 
Corequisites: 
Learning Goals: 

After reading and discussing this paper, students will be able to:

-          Differentiate between notations describing planes, directions, and families of planes

-          Describe atomic surface terminations of different crystal faces of the same unit cell

-          Describe the effect of common additives on synthesis of crystals

-          Determine d-spacings of planes from XRD data

-          Determine lattice parameters from XRD data 

Implementation Notes: 

I used this article in the Spring of 2014 in a class of 9 (1 freshmen, 1 sophomore, 5 juniors, 2 seniors) as our conclusion of our discussion of solid state chemistry.   Students had a background in electrochemistry, crystal structures and x-ray diffraction before reading this paper.  Students were required to submit the first set of questions when they came to class and then they worked on the second set of questions in small groups.  During the class discussion, we reviewed electrochemistry, in particular the reaction of electrodeposition of Cu2+ to Cu2O and revisited Pourbaix diagrams briefly to discuss stability of different metal oxide species.  We also discussed preferential adsorption and how this impacts crystal growth.  For a good paper on preferential absorption, see Matthew J. Siegfried and Kyoung-Shin Choi, “Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution,” Adv. Mater. 2004, 16, 1743-1746. (dx.doi.org/ 10.1002/adma.200400177). Schematic 1 is particularly helpful and I used it to develop the concept preferential adsorption and the relative enrgies of planes. 

Time Required: 
50 minutes
29 Jun 2015

Introduction to Miller Indices

Submitted by Vanessa McCaffrey, Albion College
Evaluation Methods: 

I evaluated the students' understanding of and engagement in the material by two different methods. 

First, students received a participation grade. They were were required to ask questions on at least one of the pages and answer one of the games on the "Question" page. 

I evaluated their factual knowledge during literature discussions later in the semester.

There were no homework or exam questions that were specific to this material. However, this will change the next time and there will be some follow-up homework. I will post this HW assignment as a separate learning object when it is completed. 

 

Evaluation Results: 

Overall, the activity was a success. In the course evaluations at the end of the semester, students reported liking the website activities (I used several from the University of Cambridge DoITPoMS Teaching and Learning Packages throughout the semester) better than reading assignments that came from the book. They reported liking the animations and the hands-on learning.

In a later literature discussion (see related LO), students were able to answer questions about the peaks in the XRD and what the different numbers meant. 

Description: 

Towards the end of the semester, when we were starting to read more of the primary literature, I realized that the Miller Indices were present in most of the papers that I wanted to discuss. However, I couldn't find any good resources in textbooks that would help to explain what these were. I found this online resource through the University of Cambridge that is engaging, interactive and concise.

Corequisites: 
Prerequisites: 
Course Level: 
Learning Goals: 

The tutorial website does an amazing goal of outling the specific learning goals here.

In brief, the learning goals for student are:

  • Gain an understanding of Miller Indices
  • Given a set of numbers, generate the unit cell plane
  • Determine the set of Miller Indices given a plane in a unit cell
  • Describe how Miller Indices can be used in the "real world" through literature examples
Implementation Notes: 

I sent the website out to the students about a week before class and asked them to read the first eight sections (through "Bracket Conventions") and also the section on "Practical Uses". I told them that we would discuss the material in class and then go through some of the Games in the "Questions" section. I intentionally left out the section that dealt with the Weiss Zone Law. 

There was no formal homework assignment associated with the assignment.

During class, I pulled the website up and we went through each of the sections. Once I felt that everyone had had a chance to ask any questions on each of the pages, I then pulled up the "Questions" and we answered the drag-and-drop questions as a class.

I called on students individually and had them answer questions in front of the class (we had been doing this all semester and there were only eight students). I answered the first questions and got several of them wrong, so they felt much more comfortable making mistakes.

When doing this again, I would use the entire tutorial, and not just selected sections.

Time Required: 
30 minutes
10 Jun 2015
Description: 

 

The resources on this website will help students learn concepts in materials chemistry, solid state chemistry, and nanoscience. The website provides links to

  • a video lab manual,
  • a cineplex of demonstrations,
  • kits that can be used for extended structures, and
  • interactive structures of solid state materials, Au nanoparticles and forms of carbon.

There videos and resources have applications across the chemistry curriculum. Many materials are inorganic. This is a great resource for people looking for ways to incorporate the new CPT guideline to discuss macromolecular, supramolecular, mesoscale and nanoscale systems within the framework of their existing curriculum.

Prerequisites: 
Corequisites: 
6 Jan 2015

Zeolite Synthesis

Submitted by Erica Gunn, Simmons College
Evaluation Methods: 

Lab notebooks were collected and graded for all students. In addition to a condensed introduction and thorough lab procedure/observations section, students discussed how well their x-ray data matched (or didn't match) the results of the instructor and other students in the lab. (Ideally, we would have compared to an inorganic structural database, but our campus does not subscribe to these sites, and I was unable to find a free one. If this resource were available, it would be interesting to have students assign peaks and calculate cage size based on diffraction angle.) Each student wrote a short conclusion and discussion of experimental error and answered the postlab questions. 

Description: 

This lab was part of the materials science portion of my second-year inorganic chemistry course. Students synthesize a zeolite structure and grow a chemical garden as examples of silicate chemistry.

I paired this lab with several prelab exercises that included visualizing the zeolite structure (see related activities), reading a current literature article related to an active research collaboration at the school, and writing a step-by-step procedure from the literature methods section to gain practice in planning out experiments (and to appreciate the differences between lab manul procedures and a formal methods section). For simplicity, these prelab components have been eliminated from the VIPEr version of the lab, but the experiment could easily be expanded to include prelab activities that match your own research and departmental interests.

We saved the students' zeolites and attempted to use them as catalysts for the aquation of hexammine cobalt (III) complexes in a later lab experiment, but the analysis was complicated by students using inconsistent quantities of material and by residual base from the zeolite synthesis, which affected the pH of the later reaction. Since zeolite surfaces are expected to be catalytic, this might be an interesting avenue to explore in a more advanced class or with stricter experimental controls.  

Course Level: 
Prerequisites: 
Learning Goals: 

Students will gain experience with silicate chemistry and will be introduced to the industrial applications of zeolites.

Powder x-ray diffraction will be used as an analytical tool for determining material structure. 

Corequisites: 
Equipment needs: 

See prep instructions for a full list of all chemicals and equipment required (quantities calculated for a 12-student lab, working individually). 

Implementation Notes: 

See instructor notes document. 

Time Required: 
4 hours, plus oven incubation and time to filter and run XRD (see instructor notes)
6 Jan 2015

Visualization of Zeolite Structure

Submitted by Erica Gunn, Simmons College
Evaluation Methods: 

Student answers to the activity questions were collected and graded based on participation/completeness.

Evaluation Results: 

Despite some technical difficulties, all students were able to access the site and seemed to find the activity helpful for understanding the zeolite cage structure. Almost all students were able to count the number of cages, identify high-symmetry orientations, and all but a few were able to draw the position of oxygen atoms in the structure successfully. Most identified the pores correctly in the expanded-view structure, though a few students had difficulty orienting the pore direction correctly relative to the unit cell dimensions. 

Description: 

Students use a Java-based website to explore the faujasite zeolite structure. The activity questions guide them through identifying different atomic positions within the structure, and orienting the zeolite pores and "cages" relative to the crystal axes. 

Learning Goals: 

Students will use computer modeling to visualize the 3D crystal structure of a zeolite, and will identify "cage" and pore structures within the solid.

Corequisites: 
Course Level: 
Equipment needs: 

Computer with a web browser capable of running Java 

Prerequisites: 
Related activities: 
Implementation Notes: 

I used this activity as a prelab assignment for a zeolite synthesis experiment (see related activities). Students did the modeling and answered the questions at home, and submitted their answers at the beginning of the lab period. It could be adapted equally well to an in-class activity if desired. 

Several students had technical difficulties allowing Java permission to run in Windows and web browsers. For me, the simplest solution was to:

1) Type "Configure Java" into Windows search bar  

2) Go to security tab

3) Add website to Exception Site list

Beware that this may require administrator privileges, so it's best to have a technology rep handy or test out in advance if you're running this in the classroom! 

Even with this fix, I did have to allow popups multiple times in some browsers (including allowing an out-of-date Java script, I believe) to get the program to run. 

 

Time Required: 
30 mins

Pages

Subscribe to RSS - Nanoscience