Supramolecular Chemistry Videos

Submitted by Shirley Lin / United States Naval Academy on Sun, 03/03/2019 - 08:08
Description

The Rebek Laboratory homepage contains information on and molecular visualizations of a variety of host-guest systems developed by the research group over several decades. The theme behind this set of examples is the use of hydrogen-bonding to achieve self-assembly. Under the "Research" tab, one can find four videos with narration: an introduction to molecular assembly and three videos of specific examples of self-assembled host systems (the cavitand, the cylinder and the volleyball).

Inorganic Chemistry

Submitted by Steven Girard / University of Wisconsin - Whitewater on Fri, 02/01/2019 - 11:58
Description

This course is composed of two components:

A. Lecture:

Advanced Inorganic Chemistry

Submitted by Darren Achey / Kutztown University on Tue, 09/11/2018 - 14:50
Description

The application of physio-chemical principles to understanding structure and reactivity in main group and transition elements. Valence Bond, Crystal Field, VSEPR, and LCAO-MO will be applied to describe the bonding in coordination compounds. Organometallic and bio-inorganic chemistry will be treated, as will boranes, cluster and ring systems, and inorganic polymers. The laboratory will involve both synthetic and analytic techniques and interpretation of results.

Developing methodology to evaluate nanotoxicology: Use of density.

Submitted by Tori Forbes / University of Iowa on Fri, 06/15/2018 - 17:30
Description

This activity is designed to relate solid-state structures to the density of materials and then provide a real world example where density is used to design a new method to explore nanotoxicity in human health.  Students can learn how to calculate the density of different materials (gold, cerium oxide, and zinc oxide) using basic principles of solid state chemistry and then compare it to the centrifugation method that was developed to evaluate nanoparticle dose rate and agglomeration in solution.

 

The Preparation and Characterization of Nanoparticles

Submitted by Kyle Grice / DePaul University on Wed, 06/13/2018 - 23:23
Description

This is a nanochemistry lab I developed for my Junior and Senior level Inorganic Chemistry course. I am NOT a nano/matertials person, but I know how important nanochemistry is and I wanted to make something where students could get an interesting introduction to the area. The first time I ran this lab was also the first time I made gold nanoparticles ever! 

We do not have any surface/nano instrumentation here (AFM, SEM/TEM, DLS, etc... we can access them at other universities off-campus but that takes time and scheduling), so that was a key limitation in making this lab. 

Foundations of Inorganic Chemistry

Submitted by Sabrina Sobel / Hofstra University on Mon, 01/22/2018 - 14:58
Description

Fundamental principles of inorganic chemistry, including: states of matter; modern atomic and bonding theory; mass and energy relationships in chemical reactions; equilibria; acids and bases; descriptive inorganic chemistry; solid state structure; and electrochemistry. Periodic properties of the elements and their compounds are discussed (3 hours lecture, 1 hour recitation). 

Inorganic Chemistry Laboratory

Submitted by Anne Bentley / Lewis & Clark College on Wed, 01/17/2018 - 13:58
Description

Introduction to classical and modern techniques for
synthesizing inorganic compounds of representative and transition
metal elements and the extensive use of IR, NMR, mass, and UV-visible
spectroscopies and other physical measurements to characterize
products. Syntheses and characterization of inorganic and organic
materials/polymers are included. Attendance at departmental seminars
required. Lecture, laboratory, oral presentations.

Inorganic and Materials Chemistry

Submitted by Karen S. Brewer / Hamilton College on Mon, 01/15/2018 - 17:12
Description

Topics in inorganic chemistry, including periodicity and descriptive chemistry of the elements, electrochemistry, transition metal coordination chemistry, and the structure and properties of solid state materials. Laboratories emphasize synthesis and characterization of inorganic coordination compounds, electrochemistry, and inorganic materials. This course satisfies the second semester of a one-year General Chemistry requirement for post-graduate Health Professions programs. Prerequisite, 120 or 125. Three hours of lecture and three hours of laboratory.

Nanomaterials Chemistry

Submitted by Anne Bentley / Lewis & Clark College on Wed, 03/23/2016 - 15:49

This list includes a number of LOs to help in teaching nanomaterials subjects; however, it is not exhaustive.

Updated June 2018.