Visualization of Solid State Structures using CrystalMaker and Physical Models

Submitted by Hilary Eppley / DePauw University on Wed, 01/08/2020 - 14:17
Description

This first-year laboratory is designed to give students an introduction to basic solid-state structures using both CrystalMaker files and physical models. I think this would work in a foundations level inorganic course as well. It could be used alternatively as an in-class activity or take-home problem set depending on the instructor. It was adapted by me and later, David Harvey, from an original activity that was posted as an educational resource on the CrystalMaker website in the mid 2000s.  

2019 Nobel Prize - Li-ion battery LOs

Submitted by Barbara Reisner / James Madison University on Wed, 10/09/2019 - 20:28

Congratulations to the 2019 recipients of the Nobel Prize - John B. Goodenough, M. Stan Whittingham and Akira Yoshino. It's a well deserved honor!

There are several LOs on VIPEr that talk about lithium ion batteries and related systems. The 2019 Nobel is a great opportunity to include something about these batteries in your class.

I hope to see more LOs in the coming weeks so we can bring this chemistry into our classrooms!

Porphyrin-Based Metal-Organic Frameworks

Submitted by Amanda Bowman / Colorado College on Thu, 06/27/2019 - 15:29
Description

This literature discussion explores the physical structures, electronic structures, and spectroscopic characterization of several porphyrin-based metal-organic frameworks through discussion of “Iron and Porphyrin Metal−Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity,” Fateeva et al. Cryst. Growth Des. 2015, 15, 1819-1826, http://dx.doi.org/doi:10.1021/cg501855k.

Advanced Inorganic Chemistry

Submitted by Weiwei Xie / Louisiana State University on Sun, 06/09/2019 - 12:11
Description

Foundations: Atomic Structure; Molecular Structure; the Structures of Solids; Group Theory

The Elements and their Compounds: Main Group elements; d-Block Elements; f-Block Elements

Physical Techniques in Inorganic Chemistry: Diffraction Methods; Other Methods

Frontiers: Defects and Ion Transport; Metal Oxides, Nitrides and Fluorides; Chalcogenides, Intercalation Compounds and Metal-rich Phases; Framework Structures; Hydrides and Hydrogen-storage Materials; Semiconductor Chemistry; Molecular Materials and Fullerides.

 

Intermediate Inorganic Chemistry, Spring 2020

Submitted by Jason D'Acchioli / University of Wisconsin-Stevens Point on Sun, 06/09/2019 - 11:33
Description

An introduction to the chemistry of inorganic compounds and materials. Descriptive chemistry of the elements. A survey of Crystal Field Theory, band theory, and various acid-base theories. Use of the chemical and scientific literature. Introduction to the seminar concept. 

Inorganic Chemistry

Submitted by Craig M. Davis / Xavier University on Sun, 06/09/2019 - 09:09
Description

Modern theories of bonding and structure, spectroscopy, redox chemistry, and reaction mechanisms. Coordination compounds, organometallic clusters, and catalysis.

Descriptive Inorganic Chemistry

Submitted by Carmen Gauthier / Florida Southern College on Sun, 06/09/2019 - 09:03
Description

Fundamental topics in inorganic chemistry will be explored, among them: atomic theory and periodicity of the elements, bonding and properties of solid state materials, main group chemistry, structure and bonding of coordination compounds, and bio-inorganic systems. The laboratory component of the course will give students experience with a various laboratory techniques used in the synthesis and characterization of inorganic compounds.

Inorganic Chemistry I

Submitted by Brad Wile / Ohio Northern University on Sun, 06/09/2019 - 08:55
Description
Bonding, structures, preparation, properties, compounds, and reactions
of main group and transition metal elements. Offered fall semester.

Inorganic Chemistry I

Submitted by Todsapon T. / University of Evansville on Sun, 06/09/2019 - 08:54
Description

Surveys classical and contemporary approaches to the study of coordination compounds, solid-state chemistry and the chemistry of elements based on groups in the periodic table.

Inorganic Chemistry & Lab

Submitted by Eric Eitrheim / University of Central Oklahoma on Sun, 06/09/2019 - 08:50
Description

CHEM 4654 (CRN: 10411) and the accompanying lab (CHEM 4654L) is worth 4 credit hours. CHEM 4654 covers atomic theory and spectroscopy, periodic properties, descriptive chemistry, inorganic structure and bonding, coordination chemistry, organometallic chemistry, symmetry and group theory.  Students must be concurrently enrolled in CHEM 4654L (CRN: 10412).