Szymczak Learning Objects from TUES workshop
The memebers of the Szymczak group created a collection of their learning objects from the TUES workshop at the University of Michigan in Summer 2016 to make them all easier to find.
The memebers of the Szymczak group created a collection of their learning objects from the TUES workshop at the University of Michigan in Summer 2016 to make them all easier to find.
This 5 slides about introduces the term "atom economy" as a means for undergraduates to start thinking about the efficiency of synthetic reactions. While this term may not be the best measure of the overall process of a reaction (as it ignores other factors such as solvents and materials used in purification), it provides a nice introduction to a concept on green chemistry. An example of an atom economic reaction, hydroamination, is briefly highlighted as it is an important ongoing research area. Notes for the instructor are included in the slides.
Based on the literature reference, this activity allows students to discover inner-sphere and outer-sphere catalytic hydrogenation mechanisms then apply their knowledge to hydroborylation. This is a guided-inquiry in-class activity that students can complete in small groups or individually with instructor support.
The article “Synthesis and Reactivity of Oxorhenium(V) Methyl, Benzyl, and Phenyl Complexes with CO; Implications for a Unique Mechanism for Migratory Insertion,” Robbins, LK; Lilly, CP; Smeltz, JL; Boyle, PD; Ison, EA;, Organometallics 2015, 34, 3152-3158 is an interesting read for students studying reaction mechanisms of organometallic complexes. The reading guide directs students to the sections of the paper that support the question posed in the Discussion Questions document.
This activity guides students into building a Molecular Orbital diagram, which focuses on metal-centered orbitals of mostly d character, for a square pyramidal complex that includes different types of ligands. Students are then asked to "fill" the resulting orbitals with metal d electrons, and examine the stability of the complex.
This literature discussion is designed for upper-level inorganic chemistry students. The article explores the motivations, design, and characterization of novel nickel(II) and nickel(IV) complexes for carbon-heteroatom bond forming reactions. Students can apply and integrate their knowledge of organic chemistry mechanisms, organometallic chemistry, and techniques for characterizing metal-ligand compounds that include NMR and CV.
This literature activity is designed to introduce students to the concept of outer-sphere hydroboration catalytic reactions. It can be used after hydrogenation and hydroboration reactions have been introduced in class (typically covered in organic chemistry). Additionally, this activity allows students to apply their understanding of redox chemistry, acid base chemistry, and physical techniques to characterize products and elucidate reactions mechanisms.
Electron counting exercise motivated by a recent paper (J. Am. Chem.
In-class exercise that helps students learn how to use structural data and other experimental methods to assign structure. Using chemical intuition, students will rationalize the structures of metal complexes that differ by protonation states.
This 5 slides about outlines the basics of lanthanide photophysics as a primer for those new to the topic. These properties are very unique and actually very useful, which is a topic for another time. The intricacies of what causes the Ln luminescence, its strengths and drawbacks are discussed along with how these drawbacks are addressed in molecular complexes. Notes for the instructor are included that explain each slide.