Literature Searching: Understanding Handbooks
To allow students to become familiar with the structure of chemical literature and provide them with an understanding of several types of basic handbooks.
To allow students to become familiar with the structure of chemical literature and provide them with an understanding of several types of basic handbooks.
This web site contains a number of interactive spreadsheets, most of which are applicable to inorganic chemistry (or a physical chemistry class that uses inorganic examples). Here's the list of the most relevant for most inorganic classes:
ABC kinetics - interactively plot concentration versus reaction extent for A, B and C in A -> B -> C by varying k values
This activity uses Gaussian with the WebMO interface to investigate the role of the metal in backbonding to CO as well as effects of the trans ligands. It can also be used as a way of introducing computational chemistry in an inorganic course.
I would use this VERY brief introduction to computational chemistry in my inorganic course to preface a computational based assignment. While one learning goal for such an assignment might be familiarity with WebMO/Gaussian, understanding the background and theory of computational chemistry would generally be beyond the scope of the inorganic course. However, I certainly want students to have some idea of what they are doing when they perform a calculation (optimization and frequency analysis of metal carbonyls, for example). I've also included here handouts I use to explain how to use W
This worksheet gives students practice with deriving and analyzing the rate laws for two step mechanisms. It's a good review of steady-state kinetics, the assumptions one makes in deriving rate laws, and rate determining steps (and how these last affect the rate law). It finishes by connecting these ligand substitution kinetics to Michaelis-Menton kinetics to show that "it's all the same math, we just change the form".
This paper is a meaty communication that covers novel bonding of 4 e- π-donors to a 14-electron species. Requires students to apply their knowledge of electron counting and organometallic bonding to ligands that are acting in novel ways. This also includes exercises dealing with chemical information and general questions that require students to put the science in context.
This consists of two parts (and a solution, which is linked below under "Related Resources", but for which you will need a faculty privileges): a primer for students (best if handed out prior to class so that students can read it beforehand, or delivered in pre-lecture format) and a worksheet. The worksheet is designed to be done in small groups with assistance from an instructor. In very large classes, in which the instructor cannot circle amongst the groups, the instructor can work through each example after the groups have a few minutes to work the problem on their own.
Here is a fun way to learn about inorganic chemistry! These songs were composed and passed along to me by Tom Mallouk at Penn State with his permission to post here on VIPEr. I Can't Get No Bragg Diffraction was a joint effort put together one year at a Gordon Research Conference on Solid State Chemistry. Sorry, no recording! The tune n-doped, recorded by the Band Edges, covers the electronic structure behind semiconductor devices. Download the lyrics for both and the mp3 file for n-doped! There is a