Chem 165 2018

Submitted by Adam Johnson / Harvey Mudd College on Sun, 06/09/2019 - 12:30

This is a collection of LOs that I used to teach a junior-senior seminar course on organometallics during Fall 2018 at Harvey Mudd College. There were a total of 9 students in the course. The Junior student (there was only one this year) was taking 2nd semester organic concurrently and had not takein inorganic (as is typical).

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sat, 06/08/2019 - 16:41

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Zinc-Zinc Bonds (Expanded and Updated)

Submitted by Wes Farrell / United States Naval Academy on Wed, 06/05/2019 - 11:42

This paper in Science reports the synthesis of decamethyldizincocene, a stable compound of Zn(I) with a zinc-zinc bond. In the original LO, the title compound and the starting material, bis(pentamethylcyclopentadienyl)zinc, offer a nice link to metallocene chemistry, electron counting, and different modes of binding of cyclopentadienyl rings as well as more advanced discussions of MO diagrams.

Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Tue, 03/26/2019 - 13:49

This is the full literature discussion based on a communicaiton (J. Am. Chem. Soc. 2011133, 9278). This paper describes a redox-switch yttrium catalyst that is an active catalyst for the polymerization of L-lactide in the reduced form and inactive in the oxidized form. The catalyst contains a ferrocene-based ligand that serves as the redox active site in the catalyst. This full literature discussion is an extension of the one figure literature discussion that is listed below.

1FLO: Redox-switch polymerization catalysis

Submitted by Chip Nataro / Lafayette College on Fri, 03/22/2019 - 16:11

This is what I hope will be a new classification of learning object called a one figure learning object (1FLO). The purpose is to take a single figure from a paper and present students with a series of questions related to interpreting the figure. This literature discussion is based on a paper (J. Am. Chem. Soc. 2011, 133, 9278) from Paula Diaconescu's lab in which a yttrium polymerization catalyst with a ferrocene-based ligand can effectively be rendered active or inactive depeneding on the valence state of the ligand.

Advanced ChemDraw (2019 Community Challenge #2)

Submitted by Chantal Stieber / Cal Poly Pomona on Tue, 02/12/2019 - 12:12

This in-class activity was designed for a Chemical Communications course with second-year students. It is the second part of a two-week segment in which students learn how to use ChemDraw (or similar drawing software to create digital drawings of molecules).

More Electron Counting and CBC Assignments for Organometallic Complexes

Submitted by Matt Whited / Carleton College on Thu, 01/31/2019 - 14:55

This in-class group activity extends my original post by providing more examples of varying difficulty for students to assign MLXZ classifications and electron counts to organometallic complexes.  The answers to these are unambiguous within the CBC system, but they provide excellent starting points for conversation with students about bonding formalisms with organometallics.

5-ish Slides About Bridging Hydrides and the [Cr(CO)5HCr(CO)5] anion

Submitted by Kyle Grice / DePaul University on Thu, 01/31/2019 - 13:52

This set of slides was made for my Organometallics class based on questions about bridging hydrides and specifically the chromium molecule. I decided to make these slides to answer the questions, and do a DFT calc to show the MO's involved in bonding of the hydride. 


Guided Literature Discussion of “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid”

Submitted by M. Watzky / University of Northern Colorado on Mon, 01/28/2019 - 14:50

This Guided Literature Discussion was assigned as a course project, and is the result of work originated by students Joie Games and Benjamin Melzer.  It is based on the article “Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid” by Matthew Finn, J. August Ridenour, Jacob Heltzel, Christopher Cahill, and Adelina Voutchkova-Kostal in Organometallics 2018 37 (9), 1400-1409.