Solid State and Materials Chemistry

15 May 2020

Inorganic Active Learning Lesson Plan Design

Submitted by Meghan Porter, Indiana University
Evaluation Methods: 

I use the rubric provided, combined with the peer review feedback (due to COVID, they did not have the chance to revise after the peer review process).  Students must also upload a key with their activity which allows me to catch any misconceptions or inaccuracies in their understanding of the material.

I assigned points as following:

Assignment/Key: See above rubric

Reflection: Worth 5 points total- while mostly graded on completion, I did want to be sure my students were providing more useful feedback than 1 word answers so I gave them the rubric below. (pretty much everyone got a 5)

Completed Reflection

5

3

1

What did you learn from completing this assignment? (i.e. What do you feel that you gained from completing it?)

What did you learn from completing other students' assignments?

What are your thoughts for improving the active learning lesson plan assignment in future iterations?  You may answer this referring to your specific lesson plan or this actual assignment of creating a lesson plan.

 

Meets all criteria at a high level, all questions are thoughtfully addressed

Meets some criteria, some questions are not addressed or non-thoughtful response provided

Meets few criteria, most questions not addressed or responses do not demonstrate thought

Peer Review: Spring 2020 was my first time doing the peer review, and of course covid definitely changed the way I had planned on completing it.  My plan was to have them exchange activities in class or in recitation, work through them in small groups, then be able to provide feedback.  Instead, they had to complete it online and provide feedback- I gave them the basic rubic, but changed the scores to categories of "exceeds expectations", "meets expectations", and "does not meet expectations".

Evaluation Results: 

I am always blown away by the creativity of my students!  While some students submit more group worksheet activities, I have had plenty come up with games, relays, building/using playdough, etc...

Students usually report that they thought they knew a topic- only to begin making an activity and realize they didn't understand it as well as they thought they did.  However, by the time the submitted their activity, they felt like they gained a much more in-depth understanding.  They also loved getting to complete other students' assignments this semester.  Their feedback indicated that they felt it was a great way to review, but also get some insight into how their peers think differently about topics.

Side note: Personally, I love seeing how many students tell me afterward that they have a newfound respect for professors after trying to make their own activity! :-)

Description: 

I created this activity as a way to get the class involved in creating new, fun ways to teach course concepts (selfishly- that part is for me) and for students to review concepts prior to the final exam (for them).  Students use a template to create a 15-20 min activity that can be used in groups during class to teach a concept we have learned during the semester.  We then randomly assign the activities and students work in groups to complete them and provide feedback.

The benefits are twofold:

1. My class is about 100-150 students per semester.  This means that each semester I have a large number of new activities (that I didn't have to make!) to use as a starting point in future semesters as I work to create a more active classroom.

2. The students get a review of the topic they have chosen for their activity, plus, they get to review additional topics from completing and providing feedback on two activities from their peers.

I have run this assignment for three semesters now.  It has been a favorite of my students since the beginning!  I have received a number of activities that I now use in class to teach topics!

Learning Goals: 

A student should be able to

  • Create a lesson plan on an inorganic topic that incorporates active learning
  • Demonstrate understanding of chosen topic via an accurate lesson plan key
  • Review multiple inorganic topics through completion of lesson plans from classmates
  • Provide constructive feedback on classmates’ completed lesson plans

 

Equipment needs: 

None

Corequisites: 
Prerequisites: 
Implementation Notes: 

Since this can be used for any level or any topic, there are plenty of variations you can try!  Some things to consider:

1. You can allow students to select any topic from the entire semester for their activity- this can be helpful prior to a final exam when you want a comprehensive review.  You can also restrict topics if you have areas that you feel your students need to focus on or if you want to assign this before a specific exam.  One of my students also suggested having a sign up sheet for topics on a first-come, first-served basis so that you don't end up with 20 balancing redox reactions and zero crystal field splitting.

2. I have tried students designing plans individually and also working in partners to create acitivties (both outside of class).  Both methods worked well, but in a class of 150, that many individual submissions to grade was a bit overwhelming!

3. The peer review was new this semester (based on a previous student suggestion).  My original plan was have them use a recitation section to work in groups through randomly assgined activities.  Due to COVID, they completed the activites on their own- they enjoyed it, but the group experience would ave been more fun.

4. Depending on your timing, you could have them go through the peer review process and then give them a chance to revise the activity based on the feedback prior to you grading it.

5. The student reflection questions are given as a survey on Canvas after they have completed both the lesson plan and the peer review process.

19 Mar 2020

Online Seminar Talks

Submitted by Amanda Reig, Ursinus College
Evaluation Methods: 

Student summaries are simply graded as complete/incomplete and are checked to see that they did in fact watch the video. If student summaries are felt to be lacking substance or incomplete, we will indicate areas they can improve on future summary reports.

Description: 

In an attempt to find a substitute for our chemistry seminar program, I have found a number of YouTube videos of chemists giving seminar lectures, mostly between 2017-2020. The topics span a range of chemistry disciplines, and are all around 1 hour in length (typical seminar length).  I have not watched them, so I cannot vouch for video quality. Feel free to add additional links in the comments below if you know of or find any great talks.

We will ask students to select and watch a certain number of lectures from the list and then write and submit a one-page summary of the talk.

Prerequisites: 
Course Level: 
Learning Goals: 

A student should be able to summarize the key points of a lecture presented by a seminar speaker.

Corequisites: 
Time Required: 
1 hour
14 Mar 2020

Solid State Structures tutorial

Submitted by Terrie Salupo-Bryant, Manchester University
Evaluation Methods: 

I grade the Solid State Structures tutorial answer sheet (44pts) in conjunction with the Problem Set to Accompany the Solid State Structures tutorial (26 pts) that incorporates concepts from the tutorial.

Evaluation Results: 

The average score (n=32) is 60pts out of 70 (86%).  Scores on the Problem Set tend to be about 5 percentage points higher than on the tutorial.  Students usually spend some time calculating the length of the unit cell edge, a, in terms of the radius (r) of an ion/atom for each of the basic unit cells.  Commonly they substitute diameter for radius or make errors in their trigonometry (see doi.org/10.1021/ed400367x  for derivation).  They also have difficulty seeing an empty hole which causes their percentage of filled octahedral and tetrahedral holes to be incorrect.  I added Figures 6 and 7 for fcc in order to help students in the future know where to look for the holes.  Visualizing 3D structures can be a challenge even to visual learners.  The average score indicates that manipulating structures on the computer makes them more tangible to students.  Wrestling with the questions is often a group effort and an opportunity for students to explain their thinking to others.

Description: 

This tutorial will introduce students to some of the three-dimensional crystal structures exhibited by ionic and metallic solids.  They will examine the simple cubic, body-centered cubic, face-centered cubic, and the hexagonal closest-packed systems.  To facilitate visualization of the structures at the atomic level, they will use the Crystal Explorer website at Purdue University.

Corequisites: 
Prerequisites: 
Learning Goals: 

After completing this tutorial, students will be able to:

  • Identify and describe basic crystal structures from their unit cells.
  • Describe the relationship between crystal packing and unit cell.
  • Determine whether atoms/ions in a crystal structure are closest packed.
  • Locate tetrahedral, octahedral, and cubic holes in a unit cell.
  • Apply geometric relationships to determine the length of a unit cell edge in terms of the radii of its atoms/ions.
  • Determine the coordination number of an atom/ion in a crystal structure.
Implementation Notes: 

The Crystal Explorer website is a free resource that contains all of the images needed to complete this tutorial.

When I teach my foundations-level inorganic chemistry class, I have students use Ludwig Mayer’s Solid State Structures JCE Software to complete this tutorial; however, the software is no longer commercially available.  It utilizes the PCMolecule application which I am still able to access on newer computers by adjusting the compatibility settings.  The images in the software use the same color schemes as the structures in the Solid State Model Kit.  See Teacher Notes for further information. I don’t have students use the model kits, though I do assemble one or two structures for them refer to if they need. 

Students can complete the tutorial in one lab session or in multiple lecture sessions.  I currently use one lecture session to get them started and have them complete it outside of class as a homework assignment.

Time Required: 
2.5 hours (longer if using the Solid State Model Kit)
8 Jan 2020
Evaluation Methods: 

I usually grade one student handout per pair and typically have 1 pt per answer on the worksheet, but take the total out of 60 pts (which ends up giving them a couple of free points).  

Evaluation Results: 

Last semester my 17 students had an average of 47 out of 60 on the lab--a bit lower than usual for that lab. The high was a 57 and the low was a 39. There were lots of different individual errors, but errors in identifying which of the first structures were closest packed and errors in % of holes occupied were common. 

Description: 

This first-year laboratory is designed to give students an introduction to basic solid-state structures using both CrystalMaker files and physical models. I think this would work in a foundations level inorganic course as well. It could be used alternatively as an in-class activity or take-home problem set depending on the instructor. It was adapted by me and later, David Harvey, from an original activity that was posted as an educational resource on the CrystalMaker website in the mid 2000s.  

Prerequisites: 
Corequisites: 
Learning Goals: 

Students will be able to

  • articulate how the atoms in a simple cubic, face-centered cubic, and body-centered cubic unit cell are arranged
  • determine the coordination number of particular atoms in a unit cell
  • count the atoms or ions in a unit cell and determine the empirical formula based on that
  • determine the length of a side of a unit cell based on the radius of an atom
  • visualize the holes in different kinds of unit cells and see how ionic solids can be built by putting ions in those holes
  • describe the forces holding different solids together
  • calculate the % of filled and empty space in lattices
  • identify closest packed structures
Equipment needs: 
  • Computer lab (approximately two students per computer) with CrystalMaker installed (it can be the student version if necessary)

and/or

  • Box of pennies
  • Mineral samples of calcite, fluorite, and NaCl (if you want to do the bonus)
Implementation Notes: 

I usually take one day of class to introduce students to CrystalMaker and all of the basic definitions and ideas of this lab before they start working on the stations. Typically I will work through the first station and then part of NaCl to show them some of the main ideas they will be using, asking them to provide answers (which are typically wrong on the first try!). I am typically circulating around answering questions as the students work through the lab. For a lab section of 24 working in 12 pairs, having one set of physical models seems adequate, but particularly at the beginning of the lab it might be helpful to have two sets of the face-centered cubic and body-centered cubic structures. The 12 computer "stations" are arranged in folders inside a Solid State Lab folder on the desktop of the lab computers, so students can just click on the correct folder and correct files as they work their way through the lab.

Time Required: 
3h lab period
9 Oct 2019

2019 Nobel Prize - Li-ion battery LOs

Submitted by Barbara Reisner, James Madison University

Congratulations to the 2019 recipients of the Nobel Prize - John B. Goodenough, M. Stan Whittingham and Akira Yoshino. It's a well deserved honor!

There are several LOs on VIPEr that talk about lithium ion batteries and related systems. The 2019 Nobel is a great opportunity to include something about these batteries in your class.

I hope to see more LOs in the coming weeks so we can bring this chemistry into our classrooms!

Prerequisites: 
Corequisites: 
8 Oct 2019
Evaluation Methods: 

assessment of students will be preformed by grading their answers to the questions in the activity.

Description: 

This is a 1 Figure lit discussion (1FLO) based on a Figure from a 2015 JACarticle on synthesizing conductive MOFs. This LO introduces students to Metal-Organic Frameworks and focuses on characterization techniques and spectroscopy. 

Prerequisites: 
Corequisites: 
Course Level: 
Learning Goals: 

As a result of completing this activity, students will be able to...

  • define what metal-organic Frameworks and Post-synthetic Modifications are
  • understand MOF terminology and notation
  • discover how mass transport and electron mobility effect conductivity
  • calculate energies of electronic transitions in electron volts
  • make connections betweeen diagrams and material sturctures
  • compare optical and microscopy techniques
  • discover the concept of photocurrect and how it could be used in different applications
Implementation Notes: 

Students should be able to complete the activity without any prior knowledge of MOFs, although some introduction to MOFs and UV-vis absorption spectroscopy would be nice.

27 Jun 2019

Porphyrin-Based Metal-Organic Frameworks

Submitted by Amanda Bowman, Colorado College
Evaluation Methods: 

Students completed this activity in small groups, then turned in individual worksheets. Student learning and performance were assessed through 1) in-class group discussion after they had worked on the activity in small groups, and 2) grading the individual worksheets. Participation was most important in the small-group portion.

Evaluation Results: 

In general, students really enjoyed this exercise and felt that it was helpful for visualizing metal-organic frameworks (particularly the extended 3D structure). They also generally felt that it was helpful in visualizing the bonding sites of metal vertices, particularly for thinking about how that influences potential reactivity. We used Mercury as a visualization software for this discussion, and the majority of students felt very comfortable using Mercury and looking at cifs on their own after this activity.

 

The biggest challenge for students seemed to be in relating the 3D structure in the cif to the images and chemicals formulas in the article. They also tended to need some hints about question 5 – to think about what information Mössbauer can provide about oxidation state of the metal, or that you can tell whether or not there are two distinct iron environments. In our class, we do brief units on X-ray crystallography including how to use and interpret cifs, and Mössbauer spectroscopy before this literature discussion. If those topics are not already addressed in a particular class it might be helpful to add them in or directly address those topics for the students as an introduction to the literature discussion.

Description: 

This literature discussion explores the physical structures, electronic structures, and spectroscopic characterization of several porphyrin-based metal-organic frameworks through discussion of “Iron and Porphyrin Metal−Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity,” Fateeva et al. Cryst. Growth Des. 2015, 15, 1819-1826, http://dx.doi.org/doi:10.1021/cg501855k. The activity gives students experience visualizing and interpreting MOF structures, and gives students exposure to some of the methods used to characterize MOFs.

Corequisites: 
Course Level: 
Learning Goals: 

Students will be able to:

  • Interpret and describe the bonding and structural characteristics of MOFs
  • Apply knowledge of ligand field strength to electronic structure of MOFs
  • Analyze X-ray crystallographic data to gain information about structural characteristics of MOFs
  • Interpret Mössbauer spectra to gain information about electronic structure of MOFs
Implementation Notes: 

This literature discussion was designed for use in an advanced (upper-level) inorganic chemistry course, but could be used in a foundational inorganic course if students have already been introduced to d-splitting diagrams and are given some coverage of Mössbauer spectroscopy and X-ray crystallography. When covering MOFs in class, students frequently expressed that visualizing and understanding the bonding sites and extended 3D structures was very challenging. So, this literature discussion was developed specifically to address that. Students completed this activity in small groups. It is very helpful to advise students ahead of time to bring laptops (or instructor should have some available) and to have the cifs from the paper downloaded and ready to go. We used Mercury as a visualization software for this activity. This activity can easily be completed in one class period. It is also helpful if students have been provided with the article ahead of time and encouraged to look it over – otherwise the most time-consuming part of this activity was allowing time for students to examine the MOF structure images in the paper before being able to discuss and answer the questions with their groups.

Note on visualization of MOFs using Mercury: To answer the discussion questions, we used the ‘stick’ or the ‘ball and stick’ style. We also used the default packing scheme (0.4x0.4x0.4) and the 1x1x1 packing scheme. The packing scheme can be changed by selecting Packing/Slicing… in the Calculate menu. I also had students view the 3x3x3 packing scheme – while this is not necessary to answer the discussion questions, it was interesting for students to be able to visualize the extended structure of the MOFs.

 

8 Jun 2019

Crystallographic Resources at Otterbein University

Submitted by Kevin Hoke, Berry College
Description: 

This site is another excellent resource from Dean Johnston (see also his Symmetry resource). It uses JSmol (in a web browser) to display different types of "Packing" and "Point Groups". For Packing, users can select different sizes for the atoms, display multiple unit cells, and rotate the model on the screen. Different layers can be color highlighted. 

Other portions of the website include resources for incorporating crystallography into the undergraduate curriculum.

Prerequisites: 
Corequisites: 
Implementation Notes: 

I use the Packing Models as part of a homework assignment in which they are stepped through multiple models. The Packing models displayed are very straightforward to manipulate and I would not worrying about having first-year students interact with it. I have not used the Point groups portion yet, but I intend to share that with students who are learning symmetry.

As with some other JSmol-based models, atomic radii are used instead of ionic radii so the traditional color coding (yellow for sulfur, red for oxygen, gray for metal) will suggest for some models that the anions are smaller than cations. In my assignments, I have students evaluate how well that agrees with tables of ionic radii.

It can be used in any modern web browser that supports HTML5 and/or Java. I have accessed models successfully on my iPhone, though it is much easier to use on a larger screen.

8 Jun 2019

VIPEr Fellows 2019 Workshop Favorites

Submitted by Barbara Reisner, James Madison University

During our first fellows workshop, the first cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

2 Jun 2019

Hyperphysics

Submitted by Barbara Reisner, James Madison University
Description: 

The hyperphysics website uses concept maps as a way to organize physics content knowledge: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html (condensed matter). I cam across this website while doing a review of the literature on what students know about semiconductors. There are nice explanations of many of the topics associated with semiconductors and they are organized in an unique way.

Prerequisites: 
Corequisites: 
Learning Goals: 

I haven't used this in teaching, but think it is a valuable resource for teaching bonding in the solid state.

Pages

Subscribe to RSS - Solid State and Materials Chemistry