Organometallic Chemistry

Submitted by Laina Geary / University of Nevada, Reno on Tue, 06/28/2022 - 17:51
Description

The goal of this course is to provide an in-depth introduction to the broad subject of organometallic chemistry. Selected topics include: main group organometallics, oxidation states, ligands, structure and bonding, mechanism and mechanistic analysis, cross coupling, hydrogenation, hydroformylation, olefin polymerization, olefin metathesis, and other applications in homogeneous catalysis and organic synthesis.

VIPEr Fellows 2022 Workshop Favorites

Submitted by Barbara Reisner / James Madison University on Sun, 06/26/2022 - 14:31

The second cohort of VIPEr fellows pulled together learning objects that they've used and liked or want to try the next time they teach their inorganic courses.

Inorganic Chemistry

Submitted by Emma Downs / Fitchburg State University on Tue, 06/07/2022 - 12:52
Description

The course will cover the elements of the periodic table that are omitted in general and organic chemistry, mainly the transition (d-block) metals.

Metal/Ligand Proton Tautomerism Facilitates Dinuclear H2 Reductive Elimination (Kuo)

Submitted by Kyle Grice / DePaul University on Tue, 06/07/2022 - 11:11
Description

This LO was developed in 2022 as part of a collection celebrating the “Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists” Inorganic Chemistry special issue. Check out the editorial and issue here: Editorial  Special Issue

The questions below refer to the following 2020 publication by Dr. Jonathan Kuo and Dr. Karen Goldberg

Inorganic Chemistry

Submitted by Martin McPhail / University of West Georgia on Thu, 05/19/2022 - 15:19
Description

The wave nature of electrons is applied to atomic structure and periodic trends. Inter and intramolecular bonding models are used to interpret the chemical and physical properties of various materials, from simplistic diatomic molecules to structurally complex molecular and ionic systems.

Evidence of a homogeneous trinuclear Rh(I)-Cu(II)-Rh(I) catalyst for benzene C-H oxidative addition and styrene production (Gunnoe)

Submitted by John Lee / University of Tennessee Chattanooga on Wed, 03/02/2022 - 10:26
Description

The literature discussion is based on a manuscript by Gunnoe and coworkers (ACS Catal. 2021, 11, 5688-5702. DOI: 10.1021/acscatal.1c01203). The paper presents mechanistic studies of catalytic oxidative conversion of arenes and olefins to alkenyl arenes with a focus on styrene production.

Free Energy of Activation & Reaction Completion Times

Submitted by Joanna Webb / West Virginia Wesleyan College on Thu, 02/17/2022 - 13:39
Description

This spreadsheet uses the Eyring equation to draw a connection between activation barriers and the timescale of a reaction. Students input a free energy of activation and can quickly see how long a reaction will take at varying temperatures. This has been particularly useful in computational sections of literature articles that investigate possible mechanistic pathways.

VIPEr nanoCHAt : NeWBiEs Spring 2022 Learning Objects

Submitted by Shirley Lin / United States Naval Academy on Wed, 02/02/2022 - 18:07

This collection accompanies the IONiC VIPEr nanoCHAt video series NeWBiEs, recorded in Spring 2022. This series is comprised of weekly conversations with two IONiC members, Wes Farrell and Shirley Lin from the US Naval Academy, as they taught a foundation-level inorganic chemistry course for the first time. The LOs discussed in the videos are included in this collection.

Inorganic Chemistry

Submitted by Jason Smee / University of Texas at Tyler on Wed, 01/19/2022 - 16:07
Description

Introductory topics in inorganic chemistry including descriptive inorganic chemistry, solid-state chemistry, and coordination chemistry with the latter area consisting of nomenclature, stereochemistry, bonding, and reaction mechanisms. 

Inorganic Chemistry

Submitted by Laurel Goj Habgood / Rollins College on Mon, 01/10/2022 - 16:45
Description

The course is currently designed for a student population impacted by COVID and College policies that the department offer this course every third semester. This semester I have a diverse student population in terms of developmental levels including cohort year (freshman, junior, senior), prior foundational course work (biochemistry, analytical, physical), and research experience. I have altered the assessment part of the course substantively from prior iterations and reduced topic coverage to provide flexibility.