George Stanley Organometallics

Submitted by Adam Johnson / Harvey Mudd College on Fri, 06/10/2016 - 14:53

This is an LO for the collection of organometallics LOs by George Stanley. Adam Johnson is curating the material that was written by George.

For many years, George hosted his organometallics lecture notes, powerpoint slides, and handouts, on his personal website at LSU. He always wanted that material available to the public. Recently, they moved to a CMS and that material is no longer available. Adam is working with George to get the 2016-2017 version of his materials up on VIPEr for everyone to use.

The lecture notes are freely available to all.

Energy Content of Fuels--Which fuel is "Best?"

Submitted by Adam Johnson / Harvey Mudd College on Sun, 05/15/2016 - 10:02
Description

There are many factors to consider when choosing a fuel. In this exercise, your group will work with a set of three different potential fuels and evaluate their performance in terms of price, energy density (per mole, per gram, and per volume) as well as in terms of CO2 emissions. You will then select which of your three fuels is the “best,” realizing that there are several possible considerations to select the “best” fuel. You will have to defend your choice, as well as your definition of “best!”

High Energy Density Materials: Bond enthalpy and safety considerations (Christe)

Submitted by Kevin Hoke / Berry College on Mon, 06/29/2015 - 15:00
Description

This is a shorter version of a previously published Learning Object. This version focuses on bond enthalpy calculations and has students think about the risks and safety precautions for the synthesis of an explosive material (nitrogen triiodide). 

There is also a longer version of this activity posted as a literature dicussion.

Materials Project

Submitted by Barbara Reisner / James Madison University on Fri, 06/12/2015 - 16:58
Description

The Materials Project is part of the Materials Genome Initiative that uses high-througput computing to uncover the properties of inorganic materials.

It's possible to search for materials and their properties

It employs high-throughput computation approaches and IT to create a system that can be used to predict properties and construct phase diagrams andPourbaix diagrams.

Web Resources from the 2013 Inorganic Curriculum Survey

Submitted by Barbara Reisner / James Madison University on Wed, 06/10/2015 - 10:49

 

In the 2013 Inorganic Curriculum Survey, respondents were asked about the resources they used when they teach inorganic chemistry. About 20% of respondents selected "other" and provided information about these resources. A number of people mentioned specific websites. This collection consists of the websites submitted in the survey.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

A Living Syllabus for Sophomore Level Inorganic Chemistry

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 16:02
Description

In my sophomore level inorganic course, I have experimented with the idea of a living syllabus as a way to develop my own specific learning objectives and to help the students connect the material to the tasks that will be expected of them in assessing their learning. 

Suite of LOs on Biomimetic Modeling

Submitted by Sheila Smith / University of Michigan- Dearborn on Mon, 08/04/2014 - 09:52

This suite of activities can be used as a unit exploring the use of small molecule models and biophysical techniques to illuminate complicated biomolecules.  The Parent LO:  Modeling the FeB center in bacterial Nitric Oxide reductase is a short, data-filled and well-written article that is approachable with an undergraduate's level of understanding.

Introduction to Photoinduced Electron Transfer

Submitted by Robert Holbrook / Northwestern University on Thu, 07/17/2014 - 17:37
Description

This 5 slides about will introduce students to the concept of photoinduced electron transfer. These slides go over the energics of photoinduced electron transfer, which implements basic concepts of photochemistry and electrochemistry. The photoinduced electron transer properties of ris-(2,2'-bipyridine)-ruthenium(II) is used as an example.