Biological Inorganic Chemistry: Structure & Reactivity edited by Bertini, Gray, Stiefel, and Valentine

Submitted by Betsy Jamieson / Smith College on Tue, 07/20/2010 - 13:10
Description

Biological Inorganic Chemistry:  Structure & Reactivity edited by Bertini, Gray, Stiefel, and Valentine was published by University Science Books (copyright 2007). It is a detailed text divided into 2 parts.  Part A gives "Overviews of Biological Inorganic Chemistry" while Part B goes into more specifics of "Metal Ion Containing Biological Systems."  Several prominent bioinorganic chemists have contributed chapters to the book in their various areas of expertise.  

Formal NSF Styled Proposal Writing in Preparation for Original Multi-Week Laboratory Projects

Submitted by Lon Porter / Wabash College on Sat, 07/17/2010 - 13:23
Description

The advanced inorganic chemistry course is completed by all chemistry majors at Wabash College during the fall of their senior year. The capstone character of the course provides an excellent opportunity for utilizing an investigator model of laboratory learning. Student teams are responsible for the preparation of a formal, National Science Foundation (NSF) styled proposal stating the goals, context, experimental timetable, safety considerations, and budget for the execution of an original laboratory project.

Kinetics of Ligand Substitution Reactions of a Pt(II) Complex

Submitted by Scott Cummings / Dominican University on Sat, 07/17/2010 - 11:47
Description
This inorganic lab experiment, focusing on the kinetics of ligand-substitution reactions of a square-planar Pt(II) complex, involves collecting UV-vis absorption data and analyzing the results to determine a rate law to support one of three proposed mechanisms.

Element Jeopardy!

Submitted by Keith Walters / Northern Kentucky University on Thu, 07/15/2010 - 11:44
Description

Like many inorganic faculty (especially those faced with trying to teach "all" of inorganic chemistry in a one-term junior/senior course), I have found it increasingly difficult over the years to include any significant descriptive chemistry content in my course. Moreover, I have a constant interest in trying to convey some of the "story behind the story" in chemistry, which in this area centers on the discovery of the elements. I was mulling this over at an ACS meeting one time and happened to be in an inorganic teaching session where Josh van Houten (St.

Organometallics and Named Reactions

Submitted by Laurel Goj Habgood / Rollins College on Sun, 07/11/2010 - 18:38
Description
A list of named reactions involving transition metal-complexes is provided to the class and the students present a brief overview of each which includes the original paper and a current application.

Descriptive Chemistry Wikipedia project

Submitted by Lori Watson / Earlham College on Mon, 06/21/2010 - 16:11
Description

Students select, research, and then post an article on an inorganic compound to Wikipedia. The compounds are chosen from a list of “stubs” (short articles that need to be expanded) found at http://en.wikipedia.org/wiki/Category:Inorganic_compound_stubs and might include such items as the synthesis, processes of isolation, structure, interesting facts about the compound in history, and/or an application of the compound.

Exploring Molecular Orbitals With Spartan

Submitted by Maggie Geselbracht / Reed College on Thu, 01/21/2010 - 21:24
Description

Molecular models and selected molecular orbital surfaces and slices were calculated with Spartan for HF, LiH, CO2, XeF2, and BF3, and the results were used by students in an in-class activity (covering several class sessions) to answer a series of questions.

Interactive Lewis Structures

Submitted by Adam Bridgeman / The University of Sydney on Wed, 01/20/2010 - 21:51
Description

http://firstyear.chem.usyd.edu.au/iChem/lewis.shtml

A set of Flash-based, interactive tools for students to construct Lewis structures for electron deficient, octet rule obeying and hypervalent MLx molecules and ions (x = 2 - 6).

The user chooses the number of electrons and bond type (single, double or triple) and is steered towards the correct stucture.

For cases where resonance structures are possible, the user must construct each form to complete the puzzle.

Metals in Biological Systems - Who? How? and Why?

Submitted by Betsy Jamieson / Smith College on Wed, 01/20/2010 - 10:01
Description

This learning object was developed collaboratively by members of the IONiC Leadership Council.  The overall goal is to provide a general overview of metals in biological systems and introduce students to several of the important ideas in the field of bioinorganic chemistry.  Topics include toxic metals, metals used in biological systems and the overlap of these categories; issues associated with the uptake, transport and storage of metal ions; and the benefits gained by using metals in biological molecules.