National ACS Award Winners 2022 LO Collection

Submitted by Shirley Lin / United States Naval Academy on Sat, 03/12/2022 - 07:01

This collection of learning objects was created to celebrate the National ACS Award Winners 2022 who are members of the Division of Inorganic Chemistry. The list of award winners is shown below. 

SLiThErs - Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable

A collection of all of the IONiC VIPEr SLiThErs (Supporting Learning with Interactive Teaching: a Hosted, Engaging Roundtable). These events are short presentations on a topic followed by a period of discussion between the presenter and live participants. Each of these events is recorded and posted to the IONiC VIPEr YouTube Channel.

Chip Nataro / Lafayette College Thu, 12/17/2020 - 14:18

New Members of the Class of [Fe(CN)x(CO)y] Compounds (Koch)

Submitted by Barbara Reisner / James Madison University on Mon, 03/11/2024 - 17:23
Description

This LO was written by the IONiC Leadership Council to celebrate Steve Koch as the recipient of the 2024 ACS Award for Distinguished Service in Advancement of Inorganic Chemistry. Steve has been a major supporter of the IONiC community since its inception. This LO is based on the article New Members of the Class of [Fe(CN)x(CO)y] Compounds. published in Inorganic Chemistry (DOI: 10.1021/ic015604y).

Electron Transfer through a Photosynthetic Reaction Center

Submitted by Levi Ekanger / The College of New Jersey on Thu, 09/07/2023 - 16:23
Description

This is a computer-based activity intended for a bioinorganic chemistry course composed of upper-level undergraduate students. It is helpful for students to be familiar with concepts of electron transfer, including a surface-level introduction to Marcus theory and the inverted region, and photosynthetic charge separation before beginning this activity. However, this activity can easily be adapted to students with other levels of preparation in a bioinorganic course.

Inorganic Chemistry

Submitted by Daniel Ashley / Spelman College on Thu, 06/22/2023 - 16:48
Description

Rigorous treatment of the chemistry of inorganic compounds, including structure, properties, and reactions, and their interpretation in terms of quantum chemistry, and solid state chemistry; analysis with modern instrumentation.

Inorganic Chemistry I

Submitted by Cody Webb Jr / Hartwick College on Wed, 06/14/2023 - 01:57
Description

This course focuses on the chemistry of the elements, including electronic structure, bonding and
molecular structure, ionic solids, coordination compounds, the origins of the elements, and the descriptive
chemistry of the elements. Topics also include inorganic synthesis, materials science, industrial chemistry,
and an introduction to bioinorganic chemistry.

Inorganic Chemistry

Submitted by Jaime Murphy / Harding University on Mon, 06/12/2023 - 11:04
Description

CHEM 4310 is an in-depth review of modern inorganic chemistry. Topics will include symmetry, acids and bases, reduction-oxidation reactions, periodic trends, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and material chemistry. The course will meet for three hours of lecture and three hours of laboratory per week.

Materials Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:33
Description

Materials Chemistry will explore many of the fundamental relationships between a material’s chemical structure and the subsequent interesting and useful properties that result.  In order for advances in electronic, magnetic, optical, and other niche applications to be made, an understanding of the structure-property relationship in these materials is crucial.  This course will emphasize inorganic systems, and topics will include descriptions of various modern inorganic solid-s

Advanced Inorganic Chemistry

Submitted by Deborah Polvani / Washington & Jefferson College on Mon, 06/12/2023 - 09:18
Description

This course will explore many of the fundamental principles of inorganic chemistry, with significant emphasis on group theory, molecular orbital theory, angular overlap theory, coordination chemistry, organometallic chemistry, and bio-inorganic chemistry. Specific topics will vary, but will generally include coverage of atomic structure, simple bonding theory, donor-acceptor chemistry, the crystalline solid state, coordination compounds and isomerism, electronic and infrared spectroscopy applied to inorganic complexes, substitution mechanisms, and catalysis.