Literature Discussion of Hexamminecobalt(III) – Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy

Submitted by EGunn / Simmons College on Tue, 12/09/2014 - 13:56
Description

I use this literature discussion in my second year inorganic class as a follow-up to a lab experiment where students synthesize Werner complexes and then (with much guidance) analyze their IR spectra using symmetry and group theory arguments. This paper provides an excellent example of how cobalt complexes are used in modern applications, and serves as a bridge to bioinorganic chemistry, which is a central feature later in the course.

Thinking about Mechanisms of Metal Ion Exchange

Submitted by Chris Goldsmith / Auburn University on Wed, 11/12/2014 - 12:03
Description

Over the past several years, I've been doing this in-class exercise shortly after discussing mechanisms of ligand exchange. The exercise expands on the lecture material by having the students think about metal ions, rather than ligands, exchanging from a coordination complex. The students are encouraged to work in groups of 3-5 and actively discuss the material amongst themselves before we go over it as a class. I do not provide the students with the article ahead of time, so that they may come up with their own conclusions, as opposed to simply repeating those of the authors.

What Can Go Wrong: A Research Lab Safety Activity

Submitted by Karen McFarlane Holman / Willamette University on Tue, 10/07/2014 - 03:15
Description

Late in their junior year and into the first two months of their senior year, chemistry majors at Willamette write and submit a research proposal.  Shortly before entering the lab for their thesis work, I lead this activity that takes place in our Senior Projects seminar class.  The class meets one hour per week and we cover topics such as how to write an effective grant proposal, ethics in science, presenting data, etc., as well as this safety activity.

Five Slides about Spectroelectrochemistry (SEC)

Submitted by Kyle Grice / DePaul University on Tue, 09/23/2014 - 11:49
Description

This "Five slides about" is meant to introduce faculty and/or students to Spectroelectrochemistry (SEC), a technique that is used in inorganic chemistry research and other areas. SEC is a powerful tool to examine species that are normally hard to synthesize and isolate due to instability and high reactivity. Papers with examples of SEC techniques are provided on the last slide. 

 

Learning from UCLA

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Sat, 09/20/2014 - 19:47
Description

This learning object is designed to spark discussion and educate students taking an inorganic chemistry course about laboratory safety.  It uses the article "Learning from UCLA" by Jyllian N. Kemsley (Chemical & Engineering News (2009), Vol. 87 Issue 31, pp.

Fe2GeS4 Nanocrystals for Photovoltaics

Submitted by Anne Bentley / Lewis & Clark College on Mon, 09/15/2014 - 14:00
Description

I asked the students in my junior/senior inorganic course to develop their own literature discussion learning objects and lead the rest of the class in a discussion of their article.  Student Johann Maradiaga chose this article describing the synthesis and characterization of Fe2GeS4 nanocrystals with potential applications in photovoltaic devices (Sarah J. Fredrick and Amy L. Prieto, “Solution Synthesis and Reactivity of Colloidal Fe2GeS4: A Potential Candidate for Earth Abundant, Nanostructured Photovoltaics” J. Am. Chem.

Maggie's LOs

Submitted by Chip Nataro / Lafayette College on Fri, 09/12/2014 - 17:25

Trap-to-Trap Distillation of Volatile Organic Liquids (Polyhalomethanes)

Submitted by Craig M. Davis / Xavier University on Thu, 09/04/2014 - 12:45
Description

This lab exercise uses air-stable compounds (polyhalomethanes) to demonstrate trap-to-trap distillation, a technique used to separate air-sensitive compounds. The apparatus (including part numbers from CHEMGLASS) is described. In addition, slush baths are employed, which are a novelty for our Inorganic Laboratory course and a source of amazement for the students. The separation of the compounds (the percentage each compound in each trap) is determined by 1H NMR.

Ligand Lineup

Submitted by Sheri Lense / University of Wisconsin Oshkosh on Fri, 08/22/2014 - 11:40
Description

This is a kinesthetic activity in which students must utilize knowledge of the σ-donating, π-donating and π-accepting ability of ligands in order to rank the ligands in the spectrochemical series.  Students are each assigned a ligand on a card.  Suggested ligands are I-, Br-, Cl-, F-, ONO-, NO2- OH-, H2O, pyridine, NH3, ethylenediamine, bipyridine, phenanthroline, PPh3, CN- and CO.  Each student must evaluate the π-accepting, π-donating and σ-donating ability o